A Riemannian Framework for Detecting Stimulus-Relevant Fiber Pathways

Functional MRI based on blood oxygenation level-dependent (BOLD) contrast is well established as a neuroimaging technique for detecting neural activity in the cortex of the human brain. Recent studies have shown that variations of BOLD signals in white matter are also related to neural activities both in resting state and under functional loading. We develop a comprehensive framework of detecting task-specific fiber pathways. We not only study fiber tracts as open curves with different physical features (shape, scale, orientation and position), but also incorporate the BOLD signals associated with them to find stimulus-relevant pathways. Specifically, we propose a novel Riemannian metric, which is a weighted sum of distances in product space of shapes and functions. This metric provides both a cost function for registration and a proper distance for comparison. Experimental results on real data have shown that we can cluster fiber pathways correctly by evaluating correlations between BOLD signals and stimuli, temporal variations and power spectra of them.

[1]  Anuj Srivastava,et al.  A comprehensive riemannian framework for the analysis of white matter fiber tracts , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[2]  Maxime Descoteaux,et al.  Recognition of white matter bundles using local and global streamline-based registration and clustering , 2017, NeuroImage.

[3]  R. Deriche,et al.  Simultaneous Manifold Learning and Clustering: Grouping White Matter Fiber Tracts Using a Volumetric White Matter Atlas , 2008, The MIDAS Journal.

[4]  J. Foong,et al.  Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study , 2000, Journal of neurology, neurosurgery, and psychiatry.

[5]  Christophe Lenglet,et al.  Automatic clustering and population analysis of white matter tracts using maximum density paths , 2014, NeuroImage.

[6]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[7]  Hulin Wu,et al.  Nonparametric regression methods for longitudinal data analysis , 2006 .

[8]  Jean-Francois Mangin,et al.  Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography , 2017, NeuroImage.

[9]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[10]  David H. Laidlaw,et al.  Identifying White-Matter Fiber Bundles in DTI Data Using an Automated Proximity-Based Fiber-Clustering Method , 2008, IEEE Transactions on Visualization and Computer Graphics.

[11]  W. Eric L. Grimson,et al.  A unified framework for clustering and quantitative analysis of white matter fiber tracts , 2008, Medical Image Anal..

[12]  Anuj Srivastava,et al.  Elastic functional principal component regression , 2018, Stat. Anal. Data Min..

[13]  Baxter P. Rogers,et al.  Detection of synchronous brain activity in white matter tracts at rest and under functional loading , 2017, Proceedings of the National Academy of Sciences.

[14]  P. Matthews,et al.  Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. , 2000, Brain : a journal of neurology.

[15]  Martijn P. van den Heuvel,et al.  The parcellation-based connectome: Limitations and extensions , 2013, NeuroImage.

[16]  Martin Styner,et al.  FADTTS: Functional analysis of diffusion tensor tract statistics , 2011, NeuroImage.

[17]  Shantanu H. Joshi,et al.  Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease , 2015, Neurobiology of Aging.

[18]  Anuj Srivastava,et al.  Statistical shape analysis: clustering, learning, and testing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Philippe C. Besse,et al.  Approximation spline de la prvision d'un processus fonctionnel autorgressif d'ordre 1 , 1996 .

[20]  I. Johnstone,et al.  On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.

[21]  Anuj Srivastava,et al.  Analysis of proteomics data: Phase amplitude separation using an extended Fisher-Rao metric , 2014 .

[22]  Anuj Srivastava,et al.  Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance , 2014, 1405.0803.

[23]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[24]  Rachid Deriche,et al.  Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers , 2010, NeuroImage.

[25]  David B. Dunson,et al.  Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions , 2016, Journal of the American Statistical Association.

[26]  Dimitri P. Bertsekas,et al.  Dynamic programming and optimal control, 3rd Edition , 2005 .

[27]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[28]  Jiliu Zhou,et al.  Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations , 2017, NeuroImage.

[29]  Wei Wu,et al.  Generative models for functional data using phase and amplitude separation , 2012, Comput. Stat. Data Anal..

[30]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Jane-ling Wang Nonparametric Regression Analysis of Longitudinal Data , 2005 .

[32]  Marie Frei,et al.  Functional Data Analysis With R And Matlab , 2016 .

[33]  David B. Dunson,et al.  Mapping population-based structural connectomes , 2018, NeuroImage.

[34]  A. Anderson,et al.  Classification and quantification of neuronal fiber pathways using diffusion tensor MRI , 2003, Magnetic resonance in medicine.