Upper bounds for a Commutative Group Code

Good spherical codes have large minimum squared distance. An important quota in the theory of spherical codes is the maximum number of points M(n, rho) displayed on the sphere Sn-1, having a minimum squared distance rho. The aim of this work is to study this problem within the class of group codes. We establish a bound for the number of points of a commutative group code in dimension even.

[1]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[2]  K. Böröczky Packing of spheres in spaces of constant curvature , 1978 .

[3]  Sueli I. Rodrigues Costa,et al.  Curves on a sphere, shift-map dynamics, and error control for continuous alphabet sources , 2003, IEEE Transactions on Information Theory.

[4]  Sueli I. Rodrigues Costa,et al.  Graphs, tessellations, and perfect codes on flat tori , 2004, IEEE Transactions on Information Theory.

[5]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  I. Blake,et al.  Group Codes for the Gaussian Channel , 1975 .

[8]  Ingemar Ingemarsson Commutative group codes for the Gaussian channel , 1973, IEEE Trans. Inf. Theory.

[9]  H. S. M. Coxeter The Beauty Of Geometry , 1999 .

[10]  David S. Slepian,et al.  Group codes for the Gaussian channel (Abstr.) , 1968, IEEE Trans. Inf. Theory.