Charged planckian interacting dark matter

A minimal model of Cold Dark Matter (CDM) is a very massive particle with only gravitational interactions, also called Planckian Interacting Dark Matter (PIDM) . Here we consider an extension of the PIDM framework by an unbroken U(1) gauge symmetry under which the PIDM is charged, but remains only gravitationally coupled to the Standard Model (SM) . Contrary to “hidden charged dark matter”, the charged PIDM never reaches thermal equilibrium with the SM . The dark sector is populated by freeze-in via gravitational interactions at reheating. If the dark fine-structure constant αD is larger than about 10−3, the dark sector thermalizes within itself, and the PIDM abundance is further modified by freeze-out in the dark sector. Interestingly, this largely reduces the dependence of the final abundance on the reheating temperature, as compared to an uncharged PIDM . Thermalization within the dark sector is driven by inelastic radiative processes, and affected by the Landau-Pomeranchuk-Migdal (LPM) effect. The observed CDM abundance can be obtained over a wide mass range from the weak to the GUT scale, and for phenomenologically interesting couplings αD∼ 10−2. Due to the different thermal history, the charged PIDM can be discriminated from “hidden charged dark matter” by more precise measurements of the effective number of neutrino species Neff.

[1]  Philip D. Plowright Front , 2019, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[2]  C. Krishnan,et al.  Dark matter from a dark connection , 2018, Modern Physics Letters A.

[3]  J. Jaeckel,et al.  Lightish but clumpy: scalar dark matter from inflationary fluctuations , 2018, Journal of Cosmology and Astroparticle Physics.

[4]  K. Nakayama,et al.  Production of purely gravitational dark matter , 2018, Journal of High Energy Physics.

[5]  K. Olive,et al.  Spin-2 portal dark matter , 2018, Physical Review D.

[6]  D. Green,et al.  Searching for light relics with large-scale structure , 2017, Journal of Cosmology and Astroparticle Physics.

[7]  Yong Tang,et al.  On thermal gravitational contribution to particle production and dark matter , 2017, 1708.05138.

[8]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[9]  S. Tulin,et al.  Dark Matter Self-interactions and Small Scale Structure , 2017, 1705.02358.

[10]  L. Randall,et al.  Make dark matter charged again , 2016, 1610.04611.

[11]  M. Raidal,et al.  Heavy spin-2 Dark Matter , 2016, 1607.03497.

[12]  M. Raidal,et al.  Super-heavy dark matter – Towards predictive scenarios from inflation , 2016, 1605.09378.

[13]  K. Nakayama,et al.  Gravitational particle production in oscillating backgrounds and its cosmological implications , 2016, 1604.08898.

[14]  Yong Tang,et al.  Pure Gravitational Dark Matter, Its Mass and Signatures , 2016, 1604.04701.

[15]  K. Tuominen,et al.  Observational constraints on decoupled hidden sectors , 2016, 1604.02401.

[16]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[17]  M. Garny,et al.  Planckian Interacting Massive Particles as Dark Matter. , 2015, Physical review letters.

[18]  Daniel Baumann,et al.  Phases of new physics in the CMB , 2015, 1508.06342.

[19]  K. Mukaida,et al.  Thermalization process after inflation and effective potential of scalar field , 2015, 1506.07661.

[20]  M. Schmaltz,et al.  Non-Abelian dark matter and dark radiation , 2015, 1505.03542.

[21]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[22]  B. Harling,et al.  Bound-state formation for thermal relic dark matter and unitarity , 2014, 1407.7874.

[23]  Aleksi Kurkela,et al.  Approach to equilibrium in weakly coupled non-Abelian plasmas. , 2014, Physical review letters.

[24]  F. Kahlhoefer,et al.  Colliding clusters and dark matter self-interactions , 2013, 1308.3419.

[25]  Hai-Bo Yu,et al.  Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure , 2013, 1302.3898.

[26]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[27]  K. Zurek,et al.  Resonant dark forces and small-scale structure. , 2012, Physical review letters.

[28]  Guy D. Moore,et al.  Thermalization in weakly coupled nonabelian plasmas , 2011, 1107.5050.

[29]  K. Sigurdson,et al.  Cosmological Limits on Hidden Sector Dark Matter , 2010, 1012.4458.

[30]  Jonathan L. Feng,et al.  Sommerfeld enhancements for thermal relic dark matter , 2010, 1005.4678.

[31]  L. Hall,et al.  Freeze-in production of FIMP dark matter , 2009, 0911.1120.

[32]  Jonathan L. Feng,et al.  Halo-shape and relic-density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses. , 2009, Physical review letters.

[33]  Jonathan L. Feng,et al.  Hidden charged dark matter , 2009, 0905.3039.

[34]  A. Smilga,et al.  Energy losses in a hot plasma revisited , 2008, 0810.5702.

[35]  Sean M. Carroll,et al.  Dark matter and dark radiation , 2008, 0810.5126.

[36]  Jonathan L. Feng,et al.  Thermal relics in hidden sectors , 2008, 0808.2318.

[37]  R. Foot,et al.  Mirror Matter-Type Dark Matter , 2004, astro-ph/0407623.

[38]  J. Hisano,et al.  Explosive dark matter annihilation. , 2003, Physical review letters.

[39]  J. Hisano,et al.  Unitarity and higher order corrections in neutralino dark matter annihilation into two photons , 2002, hep-ph/0212022.

[40]  L. Yaffe,et al.  Effective kinetic theory for high temperature gauge theories , 2002, hep-ph/0209353.

[41]  E. Kolb,et al.  Gravitational production of superheavy dark matter , 2001, hep-ph/0104100.

[42]  E. Kolb,et al.  Largest temperature of the radiation era and its cosmological implications , 2000, hep-ph/0005123.

[43]  V. Kuzmin,et al.  Ultra-high-energy cosmic rays and inflation relics , 1999, hep-ph/9903542.

[44]  A. Riotto,et al.  WIMPZILLAS! , 1998, hep-ph/9810361.

[45]  E. Kolb,et al.  Production of massive particles during reheating , 1998, hep-ph/9809453.

[46]  J. Gunion,et al.  Heavy gluino as the lightest supersymmetric particle , 1998, hep-ph/9806361.

[47]  E. Kolb,et al.  Nonthermal Supermassive Dark Matter , 1998, hep-ph/9805473.

[48]  Graciela B. Gelmini,et al.  Cosmic abundances of stable particles: Improved analysis , 1991 .

[49]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[50]  Birgit Wirtz,et al.  Principles Of Physical Cosmology , 2016 .

[51]  A. Smilga,et al.  REVIEWS OF TOPICAL PROBLEMS: Energy losses in relativistic plasmas: QCD versus QED , 2009 .

[52]  M. Garny,et al.  ournal of C osmology and A stroparticle hysics J Theory and phenomenology of Planckian interacting massive particles as dark matter , 2022 .

[53]  A. Schmidt-May,et al.  ournal of C osmology and A stroparticle hysics J Dark matter scenarios with multiple spin-2 fields , 2022 .