B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness
暂无分享,去创建一个
[1] A. Romanyuk. Linear Widths of the Besov Classes of Periodic Functions of Many Variables. II , 2001 .
[2] Amara Lynn Graps,et al. An introduction to wavelets , 1995 .
[3] A. S. Romanyuk. Linear Widths of the Besov Classes of Periodic Functions of Many Variables. I , 2001 .
[4] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .
[5] H. Triebel,et al. Function Spaces in Lipschitz Domains and Optimal Rates of Convergence for Sampling , 2006 .
[6] S. Stasyuk. Ω OF PERIODIC FUNCTIONS OF MANY VARIABLES , 2004 .
[7] R. DeVore,et al. Interpolation of Besov-Spaces , 1988 .
[8] C. Chui,et al. A natural formulation of quasi-interpolation by multivariate splines , 1987 .
[9] Paul L. Butzer,et al. Central factorial numbers; their main properties and some applications. , 1989 .
[10] S. B. Stechkin. Approximation of periodic functions , 1974 .
[11] C. D. Boor,et al. Spline approximation by quasiinterpolants , 1973 .
[12] Dinh Dung,et al. Optimal adaptive sampling recovery , 2011, Adv. Comput. Math..
[13] Din' Zung,et al. ON THE RECOVERY AND ONE-SIDED APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1991 .
[14] Dinh Dung,et al. On Optimal Recovery of Multivariate Periodic Functions , 1991 .
[15] Dinh Dung,et al. Non-linear sampling recovery based on quasi-interpolant wavelet representations , 2009, Adv. Comput. Math..
[16] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[17] S. Kudryavtsev. The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points , 1998 .
[18] Vladimir N. Temlyakov,et al. On Approximate Recovery of Functions with Bounded Mixed Derivative , 1993, J. Complex..
[19] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .