Some constructions for t pairwise orthogonal diagonal Latin squares based on difference matrices

A diagonal Latin square is one whose main and back diagonals are both transversals. Difference matrices, quasi-difference matrices and holey quasi-difference matrices are used to construct t pairwise orthogonal diagonal Latin squares of order v ( t PODLS ( v ) ) in this paper. For t = 3 , 4 , 5 , known existence results for t PODLS ( v ) are then updated; for t = 3 , 4, and 5, there remain respectively 1, 11 and 32 unsolved cases, the largest of which are v = 10 , 54 and 98 respectively.

[1]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[2]  Lijun Ji,et al.  Constructions of new orthogonal arrays and covering arrays of strength three , 2010, J. Comb. Theory, Ser. A.

[3]  R. Julian R. Abel,et al.  Some new MOLS of order 2np for p a prime power , 1994, Australas. J Comb..

[4]  Beiliang Du,et al.  The existence of orthogonal diagonal Latin squares with subsquares , 1996, Discret. Math..

[5]  Beiliang Du New bounds for pairwise orthogonal diagonal Latin squares , 1993, Australas. J Comb..

[6]  R. Julian R. Abel,et al.  Existence of 2 SOLS and 2 ISOLS , 2012, Discret. Math..

[7]  D. T. Todorov Four Mutually Orthogonal Latin Squares of Order 14 , 2012 .

[8]  R. Julian R. Abel Some V(12, t) vectors and designs from difference and quasi-difference matrices , 2008, Australas. J Comb..

[9]  A. E. Brouwer,et al.  stichting mathematisch centrum , 2006 .

[10]  C. Colbourn,et al.  Concerning seven and eight mutually orthogonal Latin squares , 2004 .

[11]  Yeow Meng Chee,et al.  Optimal Partitioned Cyclic Difference Packings for Frequency Hopping and Code Synchronization , 2010, IEEE Transactions on Information Theory.

[12]  Yang Li,et al.  Covering arrays of strength 3 and 4 from holey difference matrices , 2009, Des. Codes Cryptogr..

[13]  Hantao Zhang,et al.  Existence of self-orthogonal diagonal Latin squares with a missing subsquare , 2003, Discret. Math..

[14]  R. Julian R. Abel,et al.  The Existence of Four HMOLS with Equal Sized Holes , 2002, Des. Codes Cryptogr..

[15]  Concerning eight mutually orthogonal latin squares , 2007 .

[16]  Yanxun Chang,et al.  Further results on optimal optical orthogonal codes with weight 4 , 2004, Discret. Math..

[17]  R. Julian R. Abel,et al.  Existence of Steiner seven-cycle systems , 2002, Discret. Math..