Economic Design of EWMA Charts with Variable Sampling Intervals

Control charting is a graphical expression and operation of statistical hypothesis testing. In the present paper, we develop the economic design of the variable sampling intervals (VSI) exponentially weighted moving average (EWMA) charts to determine the values of the six test parameters of the charts (i.e., the sample size, the long sampling interval, the short sampling interval, the warning limit coefficient, the control limit coefficient, and exponential weight constant) such that the expected total cost is minimized. The genetic algorithm (GA) is applied to search for the optimal values of the six test parameters of the VSI EWMA chart, and an example is provided to illustrate the solution procedure. A sensitivity analysis is then carried out to investigate the effects of model parameters on the solution of the economic design.

[1]  Lonnie C. Vance,et al.  The Economic Design of Control Charts: A Unified Approach , 1986 .

[2]  James M. Lucas,et al.  Exponentially weighted moving average control schemes with variable sampling intervals , 1992 .

[3]  H. A. Knappenberger,et al.  Minimum Cost Quality Control Tests , 1969 .

[4]  Yu-Chang Lin,et al.  On the design of variable sample size and sampling intervals X¯ charts under non-normality , 2005 .

[5]  A. Goel,et al.  An Algorithm for the Determination of the Economic Design of -Charts Based on Duncan's Model , 1968 .

[6]  S. Crowder A simple method for studying run-length distribution of exponentially weighted moving average charts , 1987 .

[7]  Mikkel T. Jensen,et al.  Generating robust and flexible job shop schedules using genetic algorithms , 2003, IEEE Trans. Evol. Comput..

[8]  Francisco Aparisi,et al.  Hotelling's T2 control chart with variable sampling intervals , 2001 .

[9]  Douglas C. Montgomery,et al.  The Economic Design of Control Charts: A Review and Literature Survey , 1980 .

[10]  Kenneth E. Case,et al.  Economic Design of Control Charts: A Literature Review for 1981–1991 , 1994 .

[11]  James M. Lucas,et al.  Average Run Lengths for Exponentially Weighted Moving Average Control Schemes Using the Markov Chain Approach , 1990 .

[12]  Robert V. Baxley,et al.  An Application of Variable Sampling Interval Control Charts , 1995 .

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  K. E. Case,et al.  THE ECONOMICALLY-BASED EWMA CONTROL CHART , 1994 .

[15]  S. W. Roberts A Comparison of Some Control Chart Procedures , 1966 .

[16]  Isaac N. Gibra Economically Optimal Determination of the Parameters of np-Control Charts , 1971 .

[17]  J. A. Nachlas,et al.  X charts with variable sampling intervals , 1988 .

[18]  S. W. Roberts Control chart tests based on geometric moving averages , 2000 .

[19]  Douglas C. Montgomery,et al.  Statistically constrained economic design of the EWMA control chart , 1995 .

[20]  Siddhartha Bhattacharyya,et al.  Knowledge-intensive genetic discovery in foreign exchange markets , 2002, IEEE Trans. Evol. Comput..

[21]  Raid W. Amin,et al.  Variable sampling interval control charts , 1987 .

[22]  Lonnie C. Vance Bibliography of Statistical Quality Control Chart Techniques, 1970-1980 , 1983 .

[23]  Yu-Chang Lin,et al.  Adaptive ―X Control Charts with Sampling at Fixed Times , 2005 .

[24]  Chung-Ho Chen,et al.  Economic design of variable sampling intervals T2 control charts using genetic algorithms , 2006, Expert Syst. Appl..

[25]  Raid W. Amin,et al.  A Robustness Study of Charts with Variable Sampling Intervals , 1993 .

[26]  童超塵 Economic Design of the EWMA Control Chart , 1992 .

[27]  K. Waldmann,et al.  Bounds for the Distribution of the Run Length of Geometric Moving Average Charts , 1986 .

[28]  Norma Faris Hubele,et al.  Using Experimental Design to Assess the Capability of a System , 1994 .

[29]  Acheson J. Duncan,et al.  The Economic Design of X Charts Used to Maintain Current Control of a Process , 1956 .