Multiobjective Estimation of Distribution Algorithms

[1]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[2]  David E. Goldberg,et al.  Limits of scalability of multiobjective estimation of distribution algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[3]  David E. Goldberg,et al.  Multiobjective hBOA, clustering, and scalability , 2005, GECCO '05.

[4]  David E. Goldberg,et al.  Real-Coded Bayesian Optimization Algorithm: Bringing the Strength of BOA into the Continuous World , 2004, GECCO.

[5]  David E. Goldberg,et al.  Designing Competent Mutation Operators Via Probabilistic Model Building of Neighborhoods , 2004, GECCO.

[6]  Patrick M. Reed,et al.  Striking the Balance: Long-Term Groundwater Monitoring Design for Conflicting Objectives , 2004 .

[7]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[8]  David E. Goldberg,et al.  A hierarchy machine: Learning to optimize from nature and humans , 2003, Complex..

[9]  David E. Goldberg,et al.  Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..

[10]  Marco Laumanns,et al.  Bayesian Optimization Algorithms for Multi-objective Optimization , 2002, PPSN.

[11]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Josef Schwarz,et al.  Estimation Distribution Algorithm for mixed continuous-discrete optimization problems , 2002 .

[14]  Dirk Thierens,et al.  Multi-objective mixture-based iterated density estimation evolutionary algorithms , 2001 .

[15]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[16]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[17]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[18]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[19]  Ivo F. Sbalzariniy,et al.  Multiobjective optimization using evolutionary algorithms , 2000 .

[20]  Dirk Thierens,et al.  Scalability Problems of Simple Genetic Algorithms , 1999, Evolutionary Computation.

[21]  Dirk Thierens,et al.  Linkage Information Processing In Distribution Estimation Algorithms , 1999, GECCO.

[22]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[23]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[24]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[25]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[26]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[27]  Dirk Thierens,et al.  Convergence Models of Genetic Algorithm Selection Schemes , 1994, PPSN.

[28]  Samir W. Mahfoud Population Size and Genetic Drift in Fitness Sharing , 1994, FOGA.

[29]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[30]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[31]  Dirk Thierens,et al.  Toward a Better Understanding of Mixing in Genetic Algorithms , 1993 .

[32]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[33]  David H. Ackley,et al.  An empirical study of bit vector function optimization , 1987 .

[34]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[35]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .