A microscale second gradient approximation of the damage parameter of quasi‐brittle heterogeneous lattices

Lattice models are powerful tools to investigate damage processes in quasi-brittle material by a microscale perspective. Starting from prior work on a novel rational damage theory for a 2D heterogenous lattice, this paper explores the connection between the series of critical strains at which the microcracks form (i.e. lattice links fail) and the second gradient of the microscale displacement field. Taking a simple tensile test as a representative case study for this endeavour, the analysis of accurate numerical results provides evidence that the second gradient of the microscale displacement field (notably the quantity | ∇ (∂ ux/∂ x)| for the specific example elaborated here) conveys indeed crucial information about the microcracks formation process and can be conveniently used to introduce simplifications of the rational theory that are of relevance by practical purposes as full field strain measurements become routinely possible with digital imaging correlation techniques. Note worthy, the results support the new view that the damage evolution is a three regimes process (I dilute damage, II homogeneous interaction, III localization.) The featured connection with the second gradient of the microscale displacement field is applicable in regions II–III, where microcracks interactions grow stronger and the lattice transitions to the softening regime. The potential impact of these findings towards the formulation of new and physically based CDM models, which are consistent with the reference discrete microscale theory, cannot be overlooked and is pointed out.

[1]  H. Steeb,et al.  An anisotropic damage model of foams on the basis of a micromechanical description , 2005 .

[2]  S. Vidoli,et al.  Generalized Hooke's law for isotropic second gradient materials , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Antonin Chambolle,et al.  When and how do cracks propagate? , 2009, Journal of the Mechanics and Physics of Solids.

[4]  S. Forest,et al.  Asymptotic analysis of heterogeneous Cosserat media , 2001 .

[5]  J. Marigo,et al.  Approche variationnelle de l'endommagement : I. Les concepts fondamentaux , 2010 .

[6]  Antonin Chambolle,et al.  Revisiting Energy Release Rates in Brittle Fracture , 2010, J. Nonlinear Sci..

[7]  A. Rinaldi Bottom-up modeling of damage in heterogeneous quasi-brittle solids , 2013 .

[8]  Gilles Pijaudier-Cabot,et al.  Progressive damage in discrete models and consequences on continuum modelling , 1996 .

[9]  Pierre Seppecher,et al.  Linear elastic trusses leading to continua with exotic mechanical interactions , 2011 .

[10]  Michael Ortiz,et al.  Hierarchical modeling in the mechanics of materials , 2000 .

[11]  Anand Jagota,et al.  Element breaking rules in computational models for brittle fracture , 1995 .

[12]  Antonio Carcaterra,et al.  Shock spectral analysis of elastic systems impacting on the water surface , 2000 .

[13]  J. Mier,et al.  Fracture mechanisms in particle composites: statistical aspects in lattice type analysis , 2002 .

[14]  Dusan Krajcinovic,et al.  Statistical models of brittle deformation: Part II: computer simulations , 1999 .

[15]  Ying-Cheng Lai,et al.  Statistical damage theory of 2D lattices : Energetics and physical foundations of damage parameter , 2007 .

[16]  Anisotropic damage for higher order continuum models , 2005 .

[17]  Paul Steinmann,et al.  On higher gradients in continuum-atomistic modelling , 2003 .

[18]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[19]  Antonio Rinaldi,et al.  Rational Damage Model of 2D Disordered Brittle Lattices Under Uniaxial Loadings , 2009 .

[20]  Tomasz Lekszycki,et al.  A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery , 2011 .

[21]  Yves Rémond,et al.  A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling , 2012 .

[22]  G. Piero,et al.  Elastic bars with cohesive energy , 2009 .

[23]  Francesco dell’Isola,et al.  Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode , 2010 .

[24]  Jianzhong Xu,et al.  Simulation of aerodynamic performance affected by vortex generators on blunt trailing-edge airfoils , 2010 .

[25]  Franccois Hild,et al.  Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review , 2006 .

[26]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[27]  Ugo Andreaus,et al.  Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator , 2010 .

[28]  Massimo Cuomo,et al.  A new thermodynamically consistent continuum model for hardening plasticity coupled with damage , 2002 .

[29]  Dusan Krajcinovic,et al.  High-velocity expansion of a cavity within a brittle material , 1999 .

[30]  L. Contrafatto,et al.  A globally convergent numerical algorithm for damaging elasto‐plasticity based on the Multiplier method , 2005 .

[31]  S. Leigh Phoenix,et al.  The asymptotic strength distribution of a general fiber bundle , 1973, Advances in Applied Probability.

[32]  Victor A. Eremeyev,et al.  Acceleration waves in micropolar elastic media , 2005 .

[33]  Ying-Cheng Lai,et al.  Lattice models of polycrystalline microstructures: A quantitative approach , 2008 .

[34]  Holger Steeb,et al.  The size effect in foams and its theoretical and numerical investigation , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Antonio Rinaldi,et al.  Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  William A. Curtin,et al.  Brittle fracture in disordered materials: A spring network model , 1990 .

[37]  Dusan Krajcinovic,et al.  Thermodynamics and statistical physics of damage processes in quasi-ductile solids , 2005 .

[38]  Massimo Cuomo,et al.  A framework of elastic–plastic damaging model for concrete under multiaxial stress states , 2006 .

[39]  H. Altenbach,et al.  Acceleration waves and ellipticity in thermoelastic micropolar media , 2010 .

[40]  Giulio Maier,et al.  Diagnosis of concrete dams by flat-jack tests and inverse analyses based on proper orthogonal decomposition , 2011 .

[41]  Sreten Mastilovic A Note on Short-time Response of Two-dimensional Lattices during Dynamic Loading , 2008 .

[42]  Dusan Krajcinovic,et al.  Penetration of Rigid Projectiles Through Quasi-Brittle Materials , 1999 .

[43]  Olivier Coussy,et al.  Second gradient poromechanics , 2007 .

[44]  Jean-Jacques Marigo,et al.  Approche variationnelle de l'endommagement : II. Les modèles à gradient , 2010 .

[45]  M. Ostoja-Starzewski,et al.  On the Size of RVE in Finite Elasticity of Random Composites , 2006 .

[46]  Martin Ostoja-Starzewski,et al.  Particle modeling of random crack patterns in epoxy plates , 2006 .

[47]  Dusan Krajcinovic,et al.  Statistical Damage Mechanics and Extreme Value Theory , 2007 .

[48]  Francesco dell’Isola,et al.  Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua , 2012 .

[49]  Dusan Krajcinovic,et al.  Statistical Damage Mechanics— Part I: Theory , 2005 .

[50]  D. Krajcinovic,et al.  Ordering effect of kinetic energy on dynamic deformation of brittle solids , 2008 .

[51]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[52]  Holger Steeb,et al.  Modeling macroscopic extended continua with the aid of numerical homogenization schemes , 2005 .

[53]  Francesco dell’Isola,et al.  Piezo-ElectroMechanical (PEM) Kirchhoff–Love plates , 2004 .