Characterization of sulfuric acid proton‐exchanged lithium niobate

A series of bulk proton‐exchanged lithium niobate waveguides has been prepared by using concentrated sulfuric acid as the proton source and varying the time and temperature of the exchange process. The optical and physical properties of the proton‐exchanged lithium niobate layer have been measured and found to be essentially identical to proton‐exchanged layers obtained by other workers using the benzoic acid process. Sulfuric acid offers a number of advantages over benzoic acid as a proton source, including a wider temperature liquid range and a greater ease of handling in a clean‐room environment.

[1]  R. Rue,et al.  Proton‐exchanged, lithium niobate planar‐optical waveguides: Chemical and optical properties and room‐temperature hydrogen isotopic exchange reactions , 1987 .

[2]  Shojiro Kawakami,et al.  Lattice constant changes and electro‐optic effects in proton‐exchanged LiNbO3 optical waveguides , 1986 .

[3]  M. Goodwin,et al.  Proton-exchanged optical waveguides in Y-cut lithium niobate , 1983 .

[4]  M. Papuchon,et al.  Integrated optical polariser on LiNbO3:Ti channel waveguides using proton exchange , 1983 .

[5]  K. Wong,et al.  Electro-optic-waveguide frequency translator in LiNbO(3) fabricated by proton exchange. , 1982, Optics letters.

[6]  Robert L. Holman,et al.  Processing Of Guided Wave Optoelectronic Materials , 1987, Other Conferences.

[7]  C. E. Rice,et al.  HNbO3 and HTaO3: New cubic perovskites prepared from LiNbO3 and LiTaO3 via ion exchange , 1982 .

[8]  S. Sriram,et al.  Integrated Optical Circuit Engineering , 1985 .

[9]  J. R. Herrington,et al.  An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3 , 1973 .

[10]  J. Veselka,et al.  Proton exchange for high‐index waveguides in LiNbO3 , 1982 .

[11]  J. J. Veselka,et al.  Composition control in proton-exchanged LiNbO3 , 1983 .

[12]  P. F. Heidrich,et al.  Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis. , 1976, Applied optics.

[13]  M Papuchon,et al.  Independent control of index and profiles in proton-exchanged lithium niobate guides. , 1983, Optics letters.

[14]  James W. Mayer,et al.  Ion Beam Handbook for Material Analysis , 1978 .

[15]  R. Rue,et al.  Proton-exchanged LiNbO/sub 3/ waveguides: the effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotopic exchange reactions , 1989 .

[16]  Secondary-ion mass spectroscopy characterization of proton-exchanged LiNbO(3) waveguides. , 1985, Optics letters.

[17]  Paolo Mazzoldi,et al.  Structural characterization of proton exchanged LiNbO3 optical waveguides , 1986 .

[18]  J. Veselka,et al.  Proton exchange in LiNbO3 , 1983 .

[19]  László Kovács,et al.  Stoichiometry dependence of the OH− absorption band in LiNbO3 crystals , 1984 .

[20]  The structure and properties of Li1-xHxNbO3 , 1986 .

[21]  Guided-wave acousto-optic interaction in proton-exchanged Y-cut LiNbO3 , 1986 .

[22]  Caterina Summonte,et al.  Strain and surface damage induced by proton exchange in Y‐cut LiNbO3 , 1985 .

[23]  C. Canali,et al.  TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapors , 1985 .

[24]  D. David,et al.  Microanalysis by the direct observation of nuclear reactions using a 2 MeV Van de Graaff , 1971 .

[25]  R. A. Becker,et al.  Comparison of guided‐wave interferometric modulators fabricated on LiNbO3 via Ti indiffusion and proton exchange , 1983 .

[26]  Michel Papuchon,et al.  Fabrication and characterization of Titanium Indiffused Proton Exchanged (TIPE) waveguides in lithium niobate , 1982 .

[27]  J. Revelli,et al.  Chemical control of optical damage in lithium niobate , 1978 .