Using tomography of GPS TEC to routinely determine ionospheric average electron density profiles

Abstract This paper introduces a technique that calculates average electron density (Ne) profiles over a wide geographic area of coverage, using tomographic ionospheric Ne profiles. These Ne profiles, which can provide information of the Ne distribution up to global positioning system (GPS) orbiting altitude (with the coordination of space-based GPS tomographic profiles), can be incorporated into the next generation of the international reference ionosphere (IRI) model. An additional advantage of tomography is that it enables accurate modeling of the topside ionosphere. By applying the tomographic reconstruction approach to ground-based GPS slant total electron content (STEC), we calculate 3-h average Ne profiles over a wide region. Since it uses real measurement data, tomographic average Ne profiles describe the ionosphere during quiet and disturbed periods. The computed average Ne profiles are compared with IRI model profiles and average Ne profiles obtained from ground-based ionosondes.

[1]  I. K. Walker,et al.  Imaging of electron density troughs by tomographic techniques , 1997 .

[2]  Mark B. Moldwin,et al.  The altitude extension of the mid‐latitude trough and its correlation with plasmapause position , 2005 .

[3]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[4]  Dale N. Anderson,et al.  Parameterized ionospheric model: A global ionospheric parameterization based on first principles models , 1995 .

[5]  I. K. Walker,et al.  The spatial structure of the dayside ionospheric trough , 1998 .

[6]  Elena S. Andreeva,et al.  RADIOTOMOGRAPHIC RECONSTRUCTION OF IONIZATION DIP IN THE PLASMA NEAR THE EARTH , 1990 .

[7]  Cathryn N. Mitchell,et al.  Ionospheric imaging of the northern crest of the Equatorial Anomaly , 2003 .

[8]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[9]  M. Förster,et al.  Neutral gas composition changes and E×B vertical plasma drift contribution to the daytime equatorial F2-region storm effects , 1994 .

[10]  S. E. Pryse,et al.  A preliminary experimental test of ionospheric tomography , 1992 .

[11]  Mark B. Moldwin,et al.  The correlation between mid‐latitude trough and the plasmapause , 2005 .

[12]  S. E. Pryse,et al.  Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification , 1993 .

[13]  E. Yizengaw,et al.  Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data , 2005 .

[14]  V. E. Kunitsyn,et al.  Russian‐American tomography experiment , 1994, Int. J. Imaging Syst. Technol..

[15]  Cathryn N. Mitchell,et al.  Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000 , 2004 .

[16]  S. Franke,et al.  Application of computerized tomography techniques to ionospheric research , 1986 .

[17]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[18]  Bela G. Fejer,et al.  Low latitude electrodynamic plasma drifts - A review , 1991 .

[19]  Takashi Maruyama,et al.  Tomographic imaging of the ionosphere over Japan by the modified truncated SVD method , 1995 .

[20]  Cathryn N. Mitchell,et al.  Determination of the vertical electron-density profile in ionospheric tomography: experimental results , 1997 .