The interpretation of fuzzy integrals and their application to fuzzy systems

Fuzzy integrals, in general, and Sugeno integrals, in particular, are well known aggregation operators. They can be used in a great variety of decision making applications. Nevertheless, their use is not easy as their interpretation is not straightforward. In this paper we study the interpretation of fuzzy integrals, focusing on Sugeno ones, and we show their application to fuzzy inference systems when the rules are not independent.

[1]  Didier Dubois,et al.  Weighted minimum and maximum operations in fuzzy set theory , 1986, Inf. Sci..

[2]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[3]  Vicenç Torra,et al.  Aggregation operators , 2007, Int. J. Approx. Reason..

[4]  R. Mesiar,et al.  CHAPTER 33 – Monotone Set Functions-Based Integrals , 2002 .

[5]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[6]  Michael Reinfrank,et al.  An introduction to fuzzy control (2nd ed.) , 1996 .

[7]  Radko Mesiar,et al.  Fuzzy Integrals , 2004, MDAI.

[8]  Vicenç Torra,et al.  Twofold integral and multi-step Choquet integral , 2004, Kybernetika.

[9]  Andrea Mesiarová-Zemánková,et al.  Construction of aggregation operators: new composition method , 2003, Kybernetika.

[10]  G. Choquet Theory of capacities , 1954 .

[11]  Marcelo Simoes Introduction to Fuzzy Control , 2003 .

[12]  Hao Ying,et al.  Essentials of fuzzy modeling and control , 1995 .

[13]  Edward Tunstel,et al.  Fuzzy behavior hierarchies for multi‐robot control , 2002, Int. J. Intell. Syst..

[14]  M. Sugeno,et al.  An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy , 1989 .

[15]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[16]  Endre Pap,et al.  Handbook of measure theory , 2002 .

[17]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[18]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[19]  Luis Magdalena,et al.  On the role of context in hierarchical fuzzy controllers , 2002, Int. J. Intell. Syst..

[20]  Michio Sugeno,et al.  Fuzzy t -conorm integral with respect to fuzzy measures: generalization of Sugeno integral and choquet integral , 1991 .

[21]  Vicenç Torra,et al.  On the Interpretation of Some Fuzzy Integrals , 2004, MDAI.

[22]  Bernard De Baets,et al.  Sugeno Integrals for the Modelling of Noise Annoyance Aggregation , 2003, IFSA.

[23]  Gaspar Mayor,et al.  Aggregation Operators , 2002 .