Symmetry protected topological phases under decoherence

We study a class of symmetry protected topological (SPT) phases under various types of decoherence, which can drive a pure SPT state into a mixed state. We demonstrate that the system can still retain the nontrivial topological information from the SPT ground state even under decoherence. The main quantity that we investigate is the ``strange correlator"proposed previously as a diagnosis for the SPT ground states, and in this work, we generalize the notion of the strange correlator to mixed-state density matrices. Using both exact calculations of the stabilizer Hamiltonians and field theory evaluations, we demonstrate that under decoherence the nontrivial features of the SPT state can persist in the two types of strange correlators: type-I and type-II. We show that the nontrivial type-I strange correlator corresponds to the presence of the SPT information that can be efficiently identified from experiments. The nontrivial type-II strange correlator corresponds to the presence of the original SPT information in the density matrix, which in principle can be identified to distinguish decohered mixed states of an SPT and trivial states. Therefore, our work provides a unified framework to understand decohered SPT phases from the information-theoretic viewpoint.

[1]  A. Vishwanath,et al.  Pivot Hamiltonians as generators of symmetry and entanglement , 2021, SciPost Physics.

[2]  X. Wen,et al.  Nonperturbative regularization of ( 1+1 )-dimensional anomaly-free chiral fermions and bosons: On the equivalence of anomaly matching conditions and boundary gapping rules , 2013, Physical Review B.

[3]  Carolyn Zhang Topological invariants for SPT entanglers , 2022, 2210.02485.

[4]  A. Vishwanath,et al.  A hierarchy of topological order from finite-depth unitaries, measurement and feedforward , 2022, 2209.06202.

[5]  Chong Wang,et al.  Average Symmetry-Protected Topological Phases , 2022, 2209.02723.

[6]  M. Fisher,et al.  Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising model to gauge theory, and beyond , 2022, 2208.11699.

[7]  Yi-Zhuang You,et al.  Symmetric Mass Generation , 2022, Symmetry.

[8]  R. Kueng,et al.  The randomized measurement toolbox , 2022, Nature Reviews Physics.

[9]  S. Vijay,et al.  Characterizing long-range entanglement in a mixed state through an emergent order on the entangling surface , 2022, Physical Review Research.

[10]  N. Schuch,et al.  Symmetry Protected Topological Order in Open Quantum Systems , 2021, Quantum.

[11]  M. Metlitski,et al.  Boundary Criticality of the 3D O(N) Model: From Normal to Extraordinary. , 2021, Physical review letters.

[12]  D. Tong Comments on symmetric mass generation in 2d and 4d , 2021, Journal of High Energy Physics.

[13]  M. Metlitski Boundary criticality of the O(N) model in d = 3 critically revisited , 2020, SciPost Physics.

[14]  A. Vishwanath,et al.  Efficiently preparing Schr\"odinger's cat, fractons and non-Abelian topological order in quantum devices , 2021, 2112.03061.

[15]  A. Vishwanath,et al.  Long-Range Entanglement from Measuring Symmetry-Protected Topological Phases , 2021, Physical Review X.

[16]  Abijith Krishnan,et al.  The extraordinary boundary transition in the 3d O(N) model via conformal bootstrap , 2021, 2111.03071.

[17]  A. Nahum,et al.  Self-Dual Criticality in Three-Dimensional Z2 Gauge Theory with Matter , 2021, Physical Review X.

[18]  A. Vishwanath,et al.  Magnetic impurities at quantum critical points: Large- N expansion and connections to symmetry-protected topological states , 2021, Physical Review B.

[19]  Joonho Lee,et al.  Time-crystalline eigenstate order on a quantum processor , 2021, Nature.

[20]  M. Lukin,et al.  Probing topological spin liquids on a programmable quantum simulator , 2021, Science.

[21]  H. Neven,et al.  Realizing topologically ordered states on a quantum processor , 2021, Science.

[22]  Cenke Xu,et al.  Green's function Zero and Symmetric Mass Generation , 2021, 2103.15865.

[23]  Chao-Ming Jian,et al.  Universal features of higher-form symmetries at phase transitions , 2021, SciPost Physics.

[24]  S. Wessel,et al.  Spin versus bond correlations along dangling edges of quantum critical magnets , 2020, 2010.15691.

[25]  Tyler D. Ellison,et al.  Symmetry-protected sign problem and magic in quantum phases of matter , 2020, Quantum.

[26]  T. Devakul,et al.  Type-II fractons from coupled spin chains and layers , 2020, 2007.07894.

[27]  Jurriaan Wouters,et al.  Interrelations among frustration-free models via Witten's conjugation , 2020, SciPost Physics Core.

[28]  Chao-Ming Jian,et al.  Continuous N\'{e}el-VBS quantum phase transition in non-local one-dimensional systems with SO(3) symmetry , 2020, SciPost Physics.

[29]  F. P. Toldin,et al.  Boundary Critical Behavior of the Three-Dimensional Heisenberg Universality Class. , 2020, Physical review letters.

[30]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[31]  A. Vishwanath,et al.  Self-organized error correction in random unitary circuits with measurement , 2020, 2002.12385.

[32]  Chao-Ming Jian,et al.  Topological edge and interface states at bulk disorder-to-order quantum critical points , 2020, 2002.10479.

[33]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[34]  Chao-Ming Jian,et al.  Generic “unnecessary” quantum critical points with minimal degrees of freedom , 2019, Physical Review B.

[35]  F. Verstraete,et al.  Galois Conjugated Tensor Fusion Categories and Nonunitary Conformal Field Theory. , 2019, Physical review letters.

[36]  John Watrous,et al.  Detecting mixed-unitary quantum channels is NP-hard , 2019, Quantum.

[37]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[38]  S. Wessel,et al.  Nonordinary criticality at the edges of planar spin-1 Heisenberg antiferromagnets , 2019, Physical Review B.

[39]  Hans Peter Büchler,et al.  Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms , 2018, Science.

[40]  Sylvain Schwartz,et al.  Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator , 2018, Nature.

[41]  T. Senthil,et al.  Adventure in Topological Phase Transitions in 3+1 -D: Non-Abelian Deconfined Quantum Criticalities and a Possible Duality , 2018, Physical Review X.

[42]  Hendrik Poulsen Nautrup,et al.  Computationally Universal Phase of Quantum Matter. , 2018, Physical review letters.

[43]  Willem B. Drees,et al.  Creation , 2003, Perfect Being Theology.

[44]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[45]  Jian-Wei Pan,et al.  Demonstration of Topological Robustness of Anyonic Braiding Statistics with a Superconducting Quantum Circuit. , 2018, Physical review letters.

[46]  S. Wessel,et al.  Nonordinary edge criticality of two-dimensional quantum critical magnets , 2018, Physical Review B.

[47]  Yingfei Gu,et al.  Entanglement features of random Hamiltonian dynamics , 2018, Physical Review B.

[48]  Wenan Guo,et al.  Engineering Surface Critical Behavior of (2+1)-Dimensional O(3) Quantum Critical Points. , 2018, Physical review letters.

[49]  F. Verstraete,et al.  Mapping Topological to Conformal Field Theories through strange Correlators. , 2018, Physical review letters.

[50]  A. Vishwanath,et al.  From bosonic topological transition to symmetric fermion mass generation , 2017, 1711.00863.

[51]  A. Nahum,et al.  Valence Bonds in Random Quantum Magnets: Theory and Application to , 2018 .

[52]  F. Verstraete,et al.  Global Anomaly Detection in Two-Dimensional Symmetry-Protected Topological Phases. , 2017, Physical review letters.

[53]  Z. Gu,et al.  Classification of symmetry-protected phases for interacting fermions in two dimensions , 2018 .

[54]  Dominic J. Williamson,et al.  Symmetry-enriched topological order in tensor networks: Defects, gauging and anyon condensation , 2017, 1711.07982.

[55]  Beni Yoshida,et al.  Efficient decoding for the Hayden-Preskill protocol , 2017, 1710.03363.

[56]  Hong-Gang Luo,et al.  Topological phase in 1D topological Kondo insulator: Z2 topological insulator, Haldane-like phase and Kondo breakdown , 2017, The European Physical Journal B.

[57]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[58]  A. Vishwanath,et al.  Symmetric Fermion Mass Generation as Deconfined Quantum Criticality , 2017, 1705.09313.

[59]  Thomas Scaffidi,et al.  Gapless Symmetry-Protected Topological Order , 2017, 1705.01557.

[60]  A. Kapustin,et al.  Fermionic SPT phases in higher dimensions and bosonization , 2017, 1701.08264.

[61]  Hong-Gang Luo,et al.  Topological phase in 1D topological Kondo insulator: Z2 topological insulator, Haldane-like phase and Kondo breakdown , 2016, The European Physical Journal B.

[62]  Fa Wang,et al.  Unconventional Surface Critical Behavior Induced by a Quantum Phase Transition from the Two-Dimensional Affleck-Kennedy-Lieb-Tasaki Phase to a Néel-Ordered Phase. , 2016, Physical review letters.

[63]  Stephen D. Bartlett,et al.  Symmetry-protected topological order at nonzero temperature , 2016, 1611.05450.

[64]  A. Schnyder,et al.  Interaction effects on the classification of crystalline topological insulators and superconductors , 2016, 1609.07469.

[65]  F. Grusdt Topological order of mixed states in correlated quantum many-body systems , 2016, 1609.02432.

[66]  T. M. Stace,et al.  Foliated Quantum Error-Correcting Codes. , 2016, Physical review letters.

[67]  E. Witten The "parity" anomaly on an unorientable manifold , 2016, 1605.02391.

[68]  K. Beach,et al.  Detection of symmetry-protected topological order in AKLT states by exact evaluation of the strange correlator , 2016, 1603.03444.

[69]  A. Stern,et al.  Dimensional Hierarchy of Fermionic Interacting Topological Phases. , 2016, Physical review letters.

[70]  T. Wei,et al.  Detecting and identifying two-dimensional symmetry-protected topological, symmetry-breaking, and intrinsic topological phases with modular matrices via tensor-network methods , 2015, 1512.07842.

[71]  Z. Meng,et al.  Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states , 2015, 1508.06389.

[72]  Beni Yoshida,et al.  Topological phases with generalized global symmetries , 2015, 1508.03468.

[73]  X. Qi,et al.  Axion field theory approach and the classification of interacting topological superconductors , 2015, 1512.04919.

[74]  S. Catterall Fermion mass without symmetry breaking , 2015, 1510.04153.

[75]  Z. Meng,et al.  Quantum Monte Carlo study of strange correlator in interacting topological insulators , 2015, 1506.00549.

[76]  A. Furusaki,et al.  Correlation effects on topological crystalline insulators , 2015, 1505.06598.

[77]  C. Beenakker,et al.  Statistical translation invariance protects a topological insulator from interactions. , 2015, 1504.07258.

[78]  Cenke Xu,et al.  Exotic quantum phase transitions of strongly interacting topological insulators , 2015 .

[79]  Cenke Xu,et al.  Interacting topological insulator and emergent grand unified theory , 2014, 1412.4784.

[80]  S. Chandrasekharan,et al.  Massive fermions without fermion bilinear condensates , 2014, 1410.6474.

[81]  S. Simon,et al.  Hidden order and flux attachment in symmetry-protected topological phases: A Laughlin-like approach , 2014, 1410.0318.

[82]  P. Sengupta,et al.  Characterizing the Haldane phase in quasi-one-dimensional spin-1 Heisenberg antiferromagnets , 2014, 1501.00422.

[83]  Cenke Xu,et al.  Symmetry Protected Topological States of Interacting Fermions and Bosons , 2014, 1409.0168.

[84]  P. Sengupta,et al.  Strange correlations in spin-1 Heisenberg antiferromagnets , 2014, 1408.1512.

[85]  A. Vishwanath,et al.  Interaction effects on 3D topological superconductors: surface topological order from vortex condensation, the 16 fold way and fermionic Kramers doublets , 2014, 1406.3032.

[86]  Á. Rivas,et al.  Two-dimensional density-matrix topological fermionic phases: topological Uhlmann numbers. , 2014, Physical review letters.

[87]  D. Arovas,et al.  Topological indices for open and thermal systems via Uhlmann's phase. , 2014, Physical review letters.

[88]  M. Cheng,et al.  Bridging fermionic and bosonic short range entangled states , 2014, 1404.6256.

[89]  P. Sengupta,et al.  Quenching the haldane gap in spin-1 Heisenberg antiferromagnets. , 2014, Physical review letters.

[90]  T. Senthil,et al.  Interacting fermionic topological insulators/superconductors in three dimensions , 2014, 1401.1142.

[91]  Cenke Xu,et al.  Wave function and strange correlator of short-range entangled states. , 2013, Physical review letters.

[92]  Cenke Xu,et al.  Classification and Description of Bosonic Symmetry Protected Topological Phases with semiclassical Nonlinear Sigma models , 2013, 1309.0515.

[93]  Ashvin Vishwanath,et al.  Symmetry-protected topological phases from decorated domain walls , 2013, Nature Communications.

[94]  A. Akhmerov,et al.  Statistical topological insulators , 2012, 1212.6191.

[95]  Ángel Rivas Vargas,et al.  Density-matrix Chern insulators: finite-temperature generalization of topological insulators , 2013 .

[96]  X. Wen A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model , 2013, 1305.1045.

[97]  T. Senthil,et al.  Wave Functions of Bosonic Symmetry Protected Topological Phases , 2013, 1301.6172.

[98]  Michael Levin,et al.  Integer quantum Hall effect for bosons. , 2012, Physical review letters.

[99]  J. Eisert,et al.  Efficient and feasible state tomography of quantum many-body systems , 2012, 1204.5735.

[100]  S. Ryu,et al.  Interaction effect on topological classification of superconductors in two dimensions , 2012, 1202.5805.

[101]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[102]  A. Vishwanath,et al.  Physics of three dimensional bosonic topological insulators: Surface Deconfined Criticality and Quantized Magnetoelectric Effect , 2012, 1209.3058.

[103]  A. Vishwanath,et al.  Quantum Criticality in Topological Insulators and Superconductors: Emergence of Strongly Coupled Majoranas and Supersymmetry , 2012, 1206.1332.

[104]  Shou-Cheng Zhang,et al.  Interacting topological phases and modular invariance , 2012, 1202.4484.

[105]  X. Qi A new class of (2 + 1)-dimensional topological superconductors with topological classification , 2012, 1202.3983.

[106]  X. Qi,et al.  Topological invariants for interacting topological insulators with inversion symmetry , 2012, 1201.6431.

[107]  Frank Pollmann,et al.  Symmetry protection of topological phases in one-dimensional quantum spin systems , 2009, 0909.4059.

[108]  Frank Pollmann,et al.  Topological Phases of One-Dimensional Fermions: An Entanglement Point of View , 2010, 1008.4346.

[109]  Alexei Kitaev,et al.  Topological phases of fermions in one dimension , 2010, 1008.4138.

[110]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[111]  A. Kitaev,et al.  Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model , 2010 .

[112]  A. Kitaev,et al.  Effects of interactions on the topological classification of free fermion systems , 2009, 0904.2197.

[113]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[114]  J I Cirac,et al.  Creation, manipulation, and detection of Abelian and non-Abelian anyons in optical lattices. , 2008, Physical review letters.

[115]  J I Cirac,et al.  String order and symmetries in quantum spin lattices. , 2008, Physical review letters.

[116]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[117]  C. Castelnovo,et al.  Entanglement and topological entropy of the toric code at finite temperature , 2007, 0704.3616.

[118]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[119]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[120]  Ng Edge states in antiferromagnetic quantum spin chains. , 1994, Physical review. B, Condensed matter.

[121]  Fisher,et al.  Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. , 1992, Physical review. B, Condensed matter.

[122]  M. Nijs,et al.  Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. , 1989, Physical review. B, Condensed matter.

[123]  S. Roth,et al.  Solitons in polyacetylene , 1987 .

[124]  F. Haldane Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .

[125]  Edward Witten,et al.  Constraints on Supersymmetry Breaking , 1982 .

[126]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[127]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .