Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1–xCdxS Buffer Layer

[1]  H. Chang,et al.  Characteristics of Zinc-Oxide-Sulfide-Mixed Films Deposited by Using Atomic Layer Deposition , 2008 .

[2]  T. Taguchi,et al.  Band Offsets in CdZnS/ZnS Strained-Layer Quantum Well and Its Application to UV Laser Diode , 1993 .

[3]  David B. Mitzi,et al.  Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3 , 2012 .

[4]  M. Placidi,et al.  Large Efficiency Improvement in Cu2ZnSnSe4 Solar Cells by Introducing a Superficial Ge Nanolayer , 2015 .

[5]  S. Kose,et al.  Optical characterization and determination of carrier density of ultrasonically sprayed CdS:Cu films , 2010 .

[6]  K. T. Ramakrishna Reddy,et al.  Studies of ZnxCd1-xS films and ZnxCd1-xS/CuGaSe2 heterojunction solar cells , 1992 .

[7]  Z. Zou,et al.  Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method , 2013 .

[8]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[9]  N. Song,et al.  Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4 , 2014 .

[10]  Takashi Minemoto,et al.  Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation , 2001 .

[11]  C. Malerba,et al.  Valence band offset at the CdS/Cu2ZnSnS4 interface probed by x-ray photoelectron spectroscopy , 2013 .

[12]  J. Sites,et al.  Efficiency limitations for wide-band-gap chalcopyrite solar cells , 2005 .

[13]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[14]  A. Hultqvist,et al.  Zn(O, S) Buffer Layers and Thickness Variations of CdS Buffer for Cu $_{2}$ZnSnS$_{4}$ Solar Cells , 2014, IEEE Journal of Photovoltaics.

[15]  B. Marsen,et al.  Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction , 2011 .

[16]  O. Gunawan,et al.  Cu2ZnSnSe4 Thin‐Film Solar Cells by Thermal Co‐evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length , 2015 .

[17]  S. Tajima,et al.  Direct measurement of band offset at the interface between CdS and Cu2ZnSnS4 using hard X-ray photoelectron spectroscopy , 2013 .

[18]  M. Green,et al.  Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers , 2016 .

[19]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[20]  R. Asahi,et al.  Improvement of the open-circuit voltage of Cu2ZnSnS4 solar cells using a two-layer structure , 2015 .

[21]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[22]  S. Siebentritt Why are kesterite solar cells not 20% efficient? , 2013 .

[23]  Aron Walsh,et al.  Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 , 2012 .

[24]  W. Jaegermann,et al.  Band lineup between CdS and ultra high vacuum-cleaved CuInS2 single crystals , 1997 .

[25]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[26]  D. Mitzi,et al.  Band alignment at the Cu2ZnSn(SxSe1−x)4/CdS interface , 2011 .

[27]  K. Chung,et al.  Interfacial energy level alignments between low-band-gap polymer PTB7 and indium zinc oxide anode , 2015 .

[28]  A. Tiwari,et al.  11.2% Efficient Solution Processed Kesterite Solar Cell with a Low Voltage Deficit , 2015 .

[29]  A. Walsh,et al.  Compositional dependence of structural and electronic properties of Cu(2)ZnSn(S,Se)(4) alloys for thin film solar cells , 2011 .