Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part II: modeling of the Charpy transition curve

Abstract A finite element simulation of the Charpy test is developed in order to model the ductile to brittle transition curve of a pressure vessel steel. The material (an A508 steel) and the experimental results are presented in a companion paper (Part I [Engng. Fract. Mech.]). The proposed simulation includes a detailed description of the material viscoplastic behavior over a wide temperature range. Ductile behavior is modeled using modified Rousselier model. The Beremin model is used to describe brittle fracture. The Charpy test is simulated using a full 3D mesh and accounting for adiabatic heating and contact between the specimen, the striker and the anvil. The developed model is well suited to represent ductile tearing. Using brittle failure parameters identified below −150 °C, it is possible to represent the transition curve up to −80 °C assuming that the Beremin stress parameter σu is independent of temperature. Above this temperature, a temperature dependent Beremin stress parameter, σu, must be used to correctly simulate the transition curve. Quasi-static and dynamic tests can then be consistently modeled.

[1]  Alan Needleman,et al.  3D analysis of failure modes in the Charpy impact test , 1994 .

[2]  Viggo Tvergaard,et al.  An analysis of the temperature and rate dependence of Charpy V-notch energies for a high nitrogen steel , 1988 .

[3]  Jacques Besson,et al.  Size and geometry effects on ductile rupture of notched bars in a C-Mn steel: experiments and modelling , 1997 .

[4]  Christian Thaulow,et al.  A complete Gurson model approach for ductile fracture , 2000 .

[5]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[6]  A. C. Mackenzie,et al.  On the influence of state of stress on ductile failure initiation in high strength steels , 1977 .

[7]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[8]  John W. Hutchinson,et al.  A computational approach to ductile crack growth under large scale yielding conditions , 1995 .

[9]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[10]  A. Needleman,et al.  Size Effects in the Charpy V-Notch Test , 2002 .

[11]  Claudio Ruggieri,et al.  A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach , 1996 .

[12]  Pascal Galon,et al.  Finite Element Simulations and Empirical Correlation for Charpy-V and Subsize Charpy Tests on an Unirradiated Low-Alloy RPV Ferritic Steel , 2002 .

[13]  Susumu Shima,et al.  Plasticity theory for porous metals , 1976 .

[14]  Domini Tigges Nocivité des défauts sous revêtement des cuves de réacteurs à eau sous pressions , 1995 .

[15]  Benoit Tanguy,et al.  Modélisation de l'essai charpy par l'approche locale de la rupture : application au cas de l'acier 16MND5 dans le domaine de transition , 2001 .

[16]  Fong Shih,et al.  Analysis of ductile to cleavage transition in part‐through cracks using a cell model incorporating statistics , 1999 .

[17]  A. Pineau,et al.  Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain , 2002 .

[18]  Alan Needleman,et al.  Dynamic 3D analysis of the Charpy V-notch test , 1993 .

[19]  Mohammed Tahar Applications de l'approche locale de la rupture fragile à l'acier 16 mnd5 : corrélation résilience-ténacité - probabilité de rupture bimodale (clivage et intergranulaire) , 1998 .

[20]  Jacques Besson,et al.  Large scale object-oriented finite element code design , 1997 .

[21]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[22]  Kim Wallin,et al.  Statistical model for carbide induced brittle fracture in steel , 1984 .

[23]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[24]  Deutsche Gesellschaft für Zerstörungsfreie Prüfung,et al.  Defect assessment in components : fundamentals and applications , 1991 .

[25]  A. Rossoll,et al.  Determination of the Fracture Toughness of a Low Alloy Steel by the Instrumented Charpy Impact Test , 2002 .

[26]  Byoungchul Hwang,et al.  Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel , 2002 .

[27]  Dominique François,et al.  From Charpy to Present Impact Testing , 2002 .

[28]  D. Norris Computer simulation of the Charpy V notch toughness test , 1979 .

[29]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[30]  C. F. Shih,et al.  Crack growth and cleavage in mismatched welds: a micromechanics study using a cell model , 1998 .

[31]  M. Shahinpoor MECANIQUE NON LINEAIRE DE L'EQUILIBRE GRAVITATIONNEL DES MATERIAUX GRANULAIRES , 1981 .

[32]  Antonio Martín-Meizoso,et al.  Modelling cleavage fracture of bainitic steels , 1994 .

[33]  Jacques Besson,et al.  Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part I: experimental results , 2005 .

[34]  F. M. Burdekin,et al.  Application of coupled brittle–ductile model to study correlation between Charpy energy and fracture toughness values , 1999 .

[35]  Noel P. O’Dowd,et al.  Prediction of cleavage failure probabilities using the Weibull stress , 2000 .

[36]  Jacques Besson,et al.  Comment on “Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel” , 2003 .

[37]  Jacques Besson,et al.  Modeling of crack growth in round bars and plane strain specimens , 2001 .

[38]  Renaud Masson,et al.  A modified Beremin model to simulate the warm pre-stress effect , 2002 .

[39]  J. D. Campbell,et al.  The temperature and strain-rate dependence of the shear strength of mild steel , 1970 .

[40]  G Bernauer,et al.  Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel , 1999 .

[41]  D. Klingbeil,et al.  The calculation of dynamic JR-curves from 2D and 3D finite element analyses of a Charpy test using a rate-dependent damage model , 2002 .

[42]  C. Prioul,et al.  Charpy impact test modelling and local approach to fracture , 2002 .

[43]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[44]  A. Needleman,et al.  Effect of material rate sensitivity on failure modes in the Charpy V-notch test , 1986 .

[45]  Jacques Besson,et al.  An extension of the Rousselier model to viscoplastic temperature dependent materials , 2002 .

[46]  H. Riesch-Oppermann,et al.  ESIS P6-98 : Procedure to measure and calculate material parameters for the local approach to fracture using notched tensile specimens , 1999 .

[47]  Jacques Besson,et al.  Ductile tearing of pipeline-steel wide plates: II. Modeling of in-plane crack propagation , 2001 .

[48]  A. Rossoll,et al.  Mechanical aspects of the Charpy impact test , 1999 .

[49]  R. H. Dodds,et al.  Simulation of ductile crack growth using computational cells: numerical aspects , 2000 .

[50]  Brocks,et al.  MICROMECHANICAL MODELLING OF DAMAGE AND FRACTURE OF DUCTILE MATERIALS , 2002 .

[51]  G. Rousselier,et al.  Ductile fracture models and their potential in local approach of fracture , 1987 .

[52]  Jacques Besson,et al.  An anisotropic Gurson type model to represent the ductile rupture of hydrided Zircaloy-4 sheets , 2000 .

[53]  B. Margolin,et al.  Modeling for ductile-to-brittle transition under ductile crack growth for reactor pressure vessel steels , 1999 .

[54]  Jacques Besson,et al.  Modeling of scatter and size effect in ductile fracture: application to thermal embrittlement of duplex stainless steels , 2000 .

[55]  Y. Liu,et al.  Mesh-dependence and stress singularity in finite element analysis of creep crack growth by continuum damage mechanics , 1994 .

[56]  Jacques Besson,et al.  Numerical modeling of Charpy V—notch tests , 2002 .

[57]  S. Bent Russell,et al.  Experiments with A New Machine for Testing Materials Impact , 1898 .