Bézier Curves in the Space of Images

Bezier curves are a widespread tool for the design of curves in Euclidian space. This paper generalizes the notion of Bezier curves to the infinite-dimensional space of images. To this end the space of images is equipped with a Riemannian metric which measures the cost of image transport and intensity variation in the sense of the metamorphosis model [MY01]. Bezier curves are then computed via the Riemannian version of de Casteljau’s algorithm, which is based on a hierarchical scheme of convex combination along geodesic curves. Geodesics are approximated using a variational discretization of the Riemannian path energy. This leads to a generalized de Casteljau method to compute suitable discrete Bezier curves in image space. Selected test cases demonstrate qualitative properties of the approach. Furthermore, a Bezier approach for the modulation of face interpolation and shape animation via image sketches is presented.

[1]  J. Necas,et al.  Multipolar viscous fluids , 1991 .

[2]  Alain Trouvé,et al.  Computational anatomy: computing metrics on anatomical shapes , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[3]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[4]  F. Park,et al.  Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .

[5]  Alain Trouvé,et al.  Local Geometry of Deformable Templates , 2005, SIAM J. Math. Anal..

[6]  M. Rumpf,et al.  Variational time discretization of geodesic calculus , 2012, 1210.2097.

[7]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[8]  Benjamin Berkels,et al.  Time Discrete Geodesic Paths in the Space of Images , 2015, SIAM J. Imaging Sci..

[9]  Lyle Noakes,et al.  Bézier curves and C2 interpolation in Riemannian manifolds , 2007, J. Approx. Theory.

[10]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[11]  Luiz Velho,et al.  Modeling on triangulations with geodesic curves , 2008, The Visual Computer.

[12]  Paul Dupuis,et al.  Variational problems on ows of di eomorphisms for image matching , 1998 .

[13]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[14]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .

[15]  Pierre-Yves Gousenbourger,et al.  Piecewise-Bézier C1 Interpolation on Riemannian Manifolds with Application to 2D Shape Morphing , 2014, 2014 22nd International Conference on Pattern Recognition.

[16]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[17]  Lei Zhu,et al.  An Image Morphing Technique Based on Optimal Mass Preserving Mapping , 2007, IEEE Transactions on Image Processing.

[18]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[19]  Lyle Noakes,et al.  Elastica in SO(3) , 2007, Journal of the Australian Mathematical Society.