Stabilizing inverse problems by internal data

Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity and the current) about the parameters of the tissues. This information, in turn, happens to stabilize the exponentially unstable and thus low resolution optical and electrical impedance tomography. Various known instances of this effect have been studied individually. We show that there is a simple general technique (covering all known cases) that shows what kind of interior data stabilizes the reconstruction, and why. Namely, we show when the linearized problem becomes elliptic pseudo-differential one, and thus stable. Stability here is meant as the problem being Fredholm, so the local uniqueness is not shown and probably does not hold in such generality.

[1]  John C. Schotland,et al.  Tomography and Inverse Transport Theory , 2011 .

[2]  Peter Kuchment,et al.  Synthetic focusing in ultrasound modulated tomography , 2009, 0901.2552.

[3]  Eung Je Woo,et al.  Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging , 2008, Physiological measurement.

[4]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[5]  Wolfgang Bangerth,et al.  Reconstructions in ultrasound modulated optical tomography , 2009, 0910.2748.

[6]  B. Brown,et al.  Applied potential tomography. , 1989, Journal of the British Interplanetary Society.

[7]  Lihong V. Wang,et al.  Dark-Field Confocal Photoacoustic Microscopy , 2009 .

[8]  O. Scherzer Handbook of mathematical methods in imaging , 2011 .

[9]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[10]  Otmar Scherzer,et al.  Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..

[11]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[12]  G. Alessandrini,et al.  Univalent σ-Harmonic Mappings , 2001 .

[13]  Peter Kuchment,et al.  2D and 3D reconstructions in acousto-electric tomography , 2010, 1011.3059.

[14]  Gunther Uhlmann Commentary on Calderón’s paper 28, On an Inverse Boundary Value Problem , 2006 .

[15]  Tosio Kato Perturbation theory for linear operators , 1966 .

[16]  Eric Bonnetier,et al.  Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..

[17]  B. T. Cox,et al.  The challenges for quantitative photoacoustic imaging , 2009, BiOS.

[18]  Huabei Jiang,et al.  Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography. , 2006, Optics express.

[19]  Alexandru Tamasan,et al.  Recovering the conductivity from a single measurement of interior data , 2009 .

[20]  Lihong V. Wang Photoacoustic imaging and spectroscopy , 2009 .

[21]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[22]  J. Wloka,et al.  Boundary value problems for elliptic systems , 1995 .

[23]  G. Uhlmann Inside out : inverse problems and applications , 2003 .

[24]  Jérôme Fehrenbach,et al.  Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements , 2009, SIAM J. Imaging Sci..

[25]  Guillaume Bal,et al.  Inverse transport theory of photoacoustics , 2009, 0908.4012.

[26]  Angela W. Ma,et al.  Current Density Impedance Imaging , 2008, IEEE Transactions on Medical Imaging.

[27]  Gunther Uhlmann,et al.  Inverse boundary value problems and applications , 1992 .

[28]  S. Arridge,et al.  Estimating chromophore distributions from multiwavelength photoacoustic images. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  P. Malliavin,et al.  Selected Papers of Alberto P. Calderon with Commentary , 2008 .

[30]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[31]  Lihong V. Wang,et al.  Acousto-electric tomography , 2004, SPIE BiOS.

[32]  G. Bal,et al.  Inverse diffusion from knowledge of power densities , 2011, 1110.4577.

[33]  Lihong V. Wang,et al.  Ultrasound‐Modulated Optical Tomography , 2012 .

[34]  G. Bal Cauchy problem for Ultrasound Modulated EIT , 2012, 1201.0972.

[35]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[36]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[37]  Peter Kuchment,et al.  Mathematics of thermoacoustic and photoacoustic tomography , 2007 .

[38]  R. Laugesen Injectivity can fail for higher-dimensional harmonic extensions , 1996 .

[39]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[40]  Eung Je Woo,et al.  Magnetic Resonance Electrical Impedance Tomography (MREIT) , 2011, SIAM Rev..

[41]  Alexandru Tamasan,et al.  Conductivity imaging with a single measurement of boundary and interior data , 2007 .

[42]  Simon R. Arridge,et al.  Multiple Illumination Quantitative Photoacoustic Tomography using Transport and Diffusion Models , 2011 .

[43]  Peter Kuchment,et al.  Mathematics of Hybrid Imaging: A Brief Review , 2011, 1107.2447.

[44]  G. Bal,et al.  Inverse scattering and acousto-optic imaging. , 2009, Physical review letters.

[45]  P. Kuchment,et al.  BANACH BUNDLES AND LINEAR OPERATORS , 1975 .

[46]  Guillaume Bal,et al.  Quantitative thermo-acoustics and related problems , 2011 .