Consistent gate and substrate current modeling based on energy transport and the lucky electron concept

A numerical model for electron gate and substrate currents in n-channel silicon MOS devices is presented. The model accurately describes hot electron injection into the gate oxide triggered by substrate voltage, drain voltage, and substrate current over a large range of bias conditions and channel lengths. In all three cases the electrons with energies higher than the respective threshold energy are modeled identically. Differences due to different physical mechanisms involved in the three cases are taken into account by means of three different constant leading factors.<<ETX>>