The geometry of Calogero-Moser systems

Nous donnons une construction geometrique de l'espace de phase du systeme de Calogero-Moser elliptique, pour des systemes de racines arbitraires, comme espace de paires (fibres, champs de Higgs) sur la r-ieme puissance de la courbe elliptique, ou r est le rang du syteme de racines. La structure de Poisson ainsi que les Hamiltoniens ont alors des constructions geometriques naturelles. Nous exhibons aussi une dualite surprenante entre les varietes spectrales du systeme de Calogero-Moser associe a un systeme de racines, et les varietes Lagrangiennes correspondant au systeme de racines dual. Enfin, nous montrons comment, pour le systeme A n , notre construction se reduit a une construcion connue.

[1]  K. Costello,et al.  Hilbert schemes, Hecke algebras and the Calogero-Sutherland system , 2003, math/0310189.

[2]  T. Nevins,et al.  From solitons to many-body systems , 2003, math/0310490.

[3]  J. Hurtubise,et al.  Surfaces and the Sklyanin Bracket , 2001, math/0107010.

[4]  R. Sasaki,et al.  Liouville integrability of classical Calogero–Moser models , 2000, hep-th/0005278.

[5]  V. Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000, math/0011114.

[6]  Ryu,et al.  Generalised Calogero-Moser Models and Universal Lax Pair Operators , 1999 .

[7]  G. Wilson Collisions of Calogero-Moser particles and an adelic Grassmannian (With an Appendix by I.G. Macdonald) , 1998 .

[8]  E. D'hoker,et al.  Spectral curves for super-Yang-Mills with adjoint hypermultiplet for general simple Lie algebras☆ , 1998, hep-th/9804126.

[9]  E. D'hoker,et al.  Calogero-Moser Lax pairs with spectral parameter for general Lie algebras , 1998, hep-th/9804124.

[10]  E. Witten,et al.  Principal G bundles over elliptic curves , 1997, alg-geom/9707004.

[11]  R. Donagi Seiberg-Witten integrable systems , 1997, alg-geom/9705010.

[12]  F. Bottacin Symplectic geometry on moduli spaces of stable pairs , 1995 .

[13]  E. Markman Spectral curves and integrable systems , 1994 .

[14]  Igor Krichever,et al.  Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles , 1980 .

[15]  A. Perelomov,et al.  Completely integrable Hamiltonian systems connected with semisimple Lie algebras , 1976 .

[16]  E. Looijenga Root systems and elliptic curves , 1976 .

[17]  J. Moser,et al.  Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .

[18]  Francesco Calogero,et al.  Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .

[19]  B. Sutherland Exact results for a quantum many body problem in one-dimension , 1971 .