Analysis of the Hungaria asteroid population

There are approximately 5000 known asteroids in the Hungaria orbital space, a region defined by orbits with high inclination (16 < i <3 4), low eccentricities (e < 0.18), and semi-major axes 1.78 < a < 2.0 AU. We argue that this region is populated by a large number of asteroids formed after a catastrophic collision involving (434) Hungaria, the presumptive largest fragment of the Hungaria collisional family. The remaining objects form a background population that share orbital characteristics with the family members. Due to the general dynamic stability of the region, it is likely that most asteroids in Hungaria space (the Hungaria ‘‘group”) have been in this region since the formation of the Solar System or at least since the planets assumed their current orbital configuration. Our examination of the Hungaria group included comparing rotation rates, taxonomic classification, and orbital dynamics to determine the characteristics of the family and background populations. We first found there is an excess of slow rotators among the group but, otherwise, the distribution of spin frequencies is essentially uniform, i.e., that a plot of the cumulative number of objects over the range of 1 d

[1]  Petr Pravec,et al.  Binary asteroid population 1. Angular momentum content , 2007 .

[2]  Andrew Scott Rivkin,et al.  Yarkovsky footprints in the Eos family , 2006 .

[3]  Alessandro Morbidelli,et al.  Proper elements for highly inclined asteroidal orbits , 1994 .

[4]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[5]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[6]  A frequency approach to identifying asteroid families - II. Families interacting with nonlinear secular resonances and low-order mean-motion resonances , 2009 .

[7]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[8]  Andrea Milani,et al.  Asteroid Proper Elements and the Dynamical Structure of the Asteroid Main Belt , 1994 .

[9]  Alan W. Iarris Tumbling Asteroids , 1997 .

[10]  R. Gil-Hutton,et al.  Collisional evolution of small body populations , 2002 .

[11]  J. Henrard,et al.  Secular resonances in the asteroid belt: Theoretical perturbation approach and the problem of their location , 1991 .

[12]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[13]  Petr Pravec,et al.  The asteroid lightcurve database , 2009 .

[14]  R. Gil-Hutton,et al.  Polarimetric observations of Hungaria asteroids , 2007 .

[15]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[16]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[17]  F. Marzari,et al.  Computing the effects of YORP on the spin rate distribution of the NEO population , 2009 .

[18]  D. Vokrouhlický,et al.  The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids , 2002 .

[19]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[20]  C. Chapman,et al.  Families of minor planets , 1979 .

[21]  Alessandro Morbidelli,et al.  The Flora Family: A Case of the Dynamically Dispersed Collisional Swarm? , 2002 .

[22]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[23]  P. Michel,et al.  Rotational breakup as the origin of small binary asteroids , 2008, Nature.

[24]  William F. Bottke,et al.  An asteroid breakup 160 Myr ago as the probable source of the K/T impactor , 2007, Nature.

[25]  The (not so) peculiar case of the Padua family , 2009 .

[26]  The formation of asteroid satellites in cata-strophic impacts: results from numerical simulations , 2003 .

[27]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[28]  Robert Jedicke,et al.  Evidence for asteroid space weathering from the Sloan Digital Sky Survey , 2005 .

[29]  Alain Doressoundiram,et al.  Spectroscopic Properties of Asteroid Families , 2002 .

[30]  Z. Ivezic,et al.  Solar system objects observed in the Sloan Digital Sky Survey commissioning data , 2001 .

[31]  D. J. Tholen,et al.  Asteroid taxonomic classifications , 1989 .

[32]  The Common Roots of Asteroids (6070) Rheinland and (54827) 2001 NQ8 , 2009 .

[33]  J. Carvano,et al.  Spectroscopic Survey of the Hungaria and Phocaea Dynamical Groups , 2001 .

[34]  David Vokrouhlický,et al.  PAIRS OF ASTEROIDS PROBABLY OF A COMMON ORIGIN , 2008 .

[35]  V. Carruba,et al.  A frequency approach to identifying asteroid families , 2007 .

[36]  R. Gil-Hutton,et al.  Surface composition of Hungaria asteroids from the analysis of the Sloan Digital Sky Survey colors , 2008 .

[37]  Andrea Milani,et al.  Asteroid proper elements and secular resonances , 1992 .

[38]  Alessandro Morbidelli,et al.  The peculiar case of the Agnia asteroid family , 2006 .

[39]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[40]  M. Ćuk,et al.  Dynamical evolution of the Hungaria asteroids , 2009 .

[41]  D. Vokrouhlický,et al.  Spin rate distribution of small asteroids , 2008 .

[42]  Yarkovsky Effect and the Dynamics of the Solar System , 2006 .

[43]  Alberto Cellino,et al.  Physical and Dynamical Properties of Asteroid Families , 2002 .

[44]  D. Vokrouhlický,et al.  The YORP effect with finite thermal conductivity , 2004 .

[45]  Alessandro Morbidelli,et al.  Yarkovsky/YORP chronology of asteroid families , 2006 .

[46]  D. Vokrouhlický,et al.  Express delivery of fossil meteorites from the inner asteroid belt to Sweden , 2007 .

[47]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[48]  Zeljko Ivezic,et al.  The Size Distributions of Asteroid Families in the SDSS Moving Object Catalog 4 , 2008, 0807.3762.

[49]  Anne Lemaitre,et al.  Hungaria: A Potential New Family , 1994 .

[50]  D. Vokrouhlický,et al.  Dynamical Spreading of Asteroid Families by the Yarkovsky Effect , 2001, Science.