Exploiting structure in computationally hard voting problems

Published in print by Universitatsverlag der TU Berlin, ISBN 978-3-7983-2825-9 (ISSN 2199-5249)

[1]  Rolf Niedermeier,et al.  Parameterized Complexity of Vertex Cover Variants , 2007, Theory of Computing Systems.

[2]  G. Demange Intermediate Preferences and Stable Coalition Structures , 1994 .

[3]  Felix A. Fischer,et al.  Possible and necessary winners of partial tournaments , 2012, AAMAS.

[4]  Dennis Epple,et al.  Equilibrium and Local Redistribution in an Urban Economy when Households Differ in both Preferences and Incomes , 1998 .

[5]  Rolf Niedermeier,et al.  Studies in Computational Aspects of Voting - A Parameterized Complexity Perspective , 2012, The Multivariate Algorithmic Revolution and Beyond.

[6]  Bjørn Erik Rasch,et al.  Insincere voting under the successive procedure , 2014 .

[7]  Hannu Nurmi,et al.  Closeness Counts in Social Choice , 2008 .

[8]  Yusufcan Masatlioglu,et al.  A foundation for strategic agenda voting , 2014, Games Econ. Behav..

[9]  Nadja Betzler,et al.  Parameterized complexity of candidate control in elections and related digraph problems , 2008, Theor. Comput. Sci..

[10]  Rolf Niedermeier,et al.  A Multivariate Complexity Analysis of Lobbying in Multiple Referenda , 2012, AAAI.

[11]  Gerhard J. Woeginger,et al.  Are there any nicely structured preference profiles nearby? , 2013, Math. Soc. Sci..

[12]  Toby Walsh,et al.  How Hard Is It to Control an Election by Breaking Ties? , 2013, ECAI.

[13]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[14]  Salvador Barberà,et al.  Sequential voting and agenda manipulation , 2017 .

[15]  Robert Bredereck Multivariate complexity analysis of team management problems , 2015 .

[16]  Piotr Faliszewski,et al.  How hard is control in single-crossing elections? , 2014, Autonomous Agents and Multi-Agent Systems.

[17]  Vincent Conitzer,et al.  How hard is it to control sequential elections via the agenda , 2009, IJCAI 2009.

[18]  Jörg Rothe,et al.  Anyone but him: The complexity of precluding an alternative , 2005, Artif. Intell..

[19]  Piotr Faliszewski,et al.  Swap Bribery , 2009, SAGT.

[20]  Jrg Rothe,et al.  Economics and Computation, An Introduction to Algorithmic Game Theory, Computational Social Choice, and Fair Division , 2015, Economics and Computation.

[21]  Piotr Faliszewski,et al.  Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges , 2014, ArXiv.

[22]  M. Trick,et al.  Voting schemes for which it can be difficult to tell who won the election , 1989 .

[23]  Christian Komusiewicz,et al.  Average parameterization and partial kernelization for computing medians , 2010, J. Comput. Syst. Sci..

[24]  Faruk Gul,et al.  Generalized Median Voter Schemes and Committees , 1993 .

[25]  Sarit Kraus,et al.  On the evaluation of election outcomes under uncertainty , 2008, Artif. Intell..

[26]  Piotr Faliszewski,et al.  Multimode Control Attacks on Elections , 2009, IJCAI.

[27]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[28]  W. Wallis The Theory of Voting , 2012 .

[29]  Hong Liu,et al.  Parameterized complexity of control problems in Maximin election , 2010, Inf. Process. Lett..

[30]  Vincent Conitzer Eliciting single-peaked preferences using comparison queries , 2007, AAMAS '07.

[31]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[32]  Ronald M. Harstad,et al.  Computationally Manageable Combinational Auctions , 1998 .

[33]  Nick Baigent Metric rationalisation of social choice functions according to principles of social choice , 1987 .

[34]  Piotr Faliszewski,et al.  Complexity of manipulation, bribery, and campaign management in Bucklin and fallback voting , 2013, Autonomous Agents and Multi-Agent Systems.

[35]  Hannu Nurmi,et al.  Voting procedures under uncertainty , 2002 .

[36]  H. Hotelling Stability in Competition , 1929 .

[37]  Bernard Monjardet,et al.  Acyclic Domains of Linear Orders: A Survey , 2006, The Mathematics of Preference, Choice and Order.

[38]  Olivier Spanjaard,et al.  Kemeny Elections with Bounded Single-Peaked or Single-Crossing Width , 2013, IJCAI.

[39]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[40]  Bjørn Erik Rasch,et al.  Manipulation and strategic voting in the Norwegian parliament , 1987 .

[41]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[42]  Nicholas R. Miller,et al.  Graph- Theoretical Approaches to the Theory of Voting* , 1977 .

[43]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[44]  Tomasz Przedmojski,et al.  Algorithms and Experiments for (Nearly) Restricted Domains in Elections , 2016 .

[45]  Vincent Conitzer,et al.  Determining Possible and Necessary Winners under Common Voting Rules Given Partial Orders , 2008, AAAI.

[46]  Gerhard J. Woeginger,et al.  Star Partitions of Perfect Graphs , 2014, ICALP.

[47]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[48]  Ken-ichi Inada THE SIMPLE MAJORITY DECISION RULE , 1969 .

[49]  Piotr Faliszewski,et al.  Large-Scale Election Campaigns: Combinatorial Shift Bribery , 2015, AAMAS.

[50]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[51]  C. Coombs A theory of data. , 1965, Psychology Review.

[52]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[53]  Rolf Niedermeier,et al.  A logic for causal reasoning , 2003, IJCAI 2003.

[54]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[55]  Victor Reiner,et al.  Acyclic sets of linear orders via the Bruhat orders , 2008, Soc. Choice Welf..

[56]  Ariel D. Procaccia,et al.  Complexity of Strategic Behavior in Multi-Winner Elections , 2008, J. Artif. Intell. Res..

[57]  David C. Parkes,et al.  A Complexity-of-Strategic-Behavior Comparison between Schulze's Rule and Ranked Pairs , 2012, AAAI.

[58]  Toby Walsh,et al.  Winner determination in voting trees with incomplete preferences and weighted votes , 2011, Autonomous Agents and Multi-Agent Systems.

[59]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[60]  Bruce Bueno de Mesquita,et al.  An Introduction to Game Theory , 2014 .

[61]  James Abello The Weak Bruhat Order of SSigma, Consistent Sets, and Catalan Numbers , 1991, SIAM J. Discret. Math..

[62]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[63]  Hong Liu,et al.  Parameterized computational complexity of control problems in voting systems , 2009, Theor. Comput. Sci..

[64]  Piotr Faliszewski,et al.  Campaigns for lazy voters: truncated ballots , 2012, AAMAS.

[65]  Peter C. Ordeshook,et al.  Agendas and the Control of Political Outcomes , 1987, American Political Science Review.

[66]  Piotr Faliszewski,et al.  Weighted electoral control , 2013, AAMAS.

[67]  Jörg Rothe,et al.  Control complexity in Bucklin and fallback voting: A theoretical analysis , 2015, J. Comput. Syst. Sci..

[68]  Piotr Faliszewski,et al.  The shield that never was: societies with single-peaked preferences are more open to manipulation and control , 2009, TARK '09.

[69]  Toby Walsh,et al.  Uncertainty in Preference Elicitation and Aggregation , 2007, AAAI.

[70]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[71]  B. Rasch,et al.  Parliamentary Floor Voting Procedures and Agenda Setting in Europe , 2000 .

[72]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[73]  David C. Mcgarvey A THEOREMI ON THE CONSTRUCTION OF VOTING PARADOXES , 1953 .

[74]  Charles R. Johnson,et al.  How Large are Transitive Simple Majority Domains , 1984 .

[75]  Kevin Roberts,et al.  Voting over income tax schedules , 1977 .

[76]  Alejandro Saporiti,et al.  Strategy-proofness and single-crossing , 2009 .

[77]  Amartya Sen,et al.  A Possibility Theorem on Majority Decisions , 1966 .

[78]  Piotr Faliszewski,et al.  Recognizing 1-Euclidean Preferences: An Alternative Approach , 2014, SAGT.

[79]  James M. Enelow,et al.  The Amendment in Legislative Strategy: Sophisticated Voting in the U.S. Congress , 1980, The Journal of Politics.

[80]  Saket Saurabh,et al.  Kernelization Lower Bounds Through Colors and IDs , 2014, ACM Trans. Algorithms.

[81]  Fan-chin Kung,et al.  An Algorithm for Stable and Equitable Coalition Structures with Public Goods , 2005 .

[82]  Peter C. Ordeshook,et al.  Agendas, Strategic Voting, and Signaling with Incomplete Information , 1988 .

[83]  Malik Magdon-Ismail,et al.  Computing Manipulations of Ranking Systems , 2015, AAMAS.

[84]  Jean-Michel Grandmont,et al.  INTERMEDIATE PREFERENCES AND THE MAJORITY RULE , 1978 .

[85]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[86]  John J. Bartholdi,et al.  Single transferable vote resists strategic voting , 2015 .

[87]  Piotr Faliszewski,et al.  The complexity of fully proportional representation for single-crossing electorates , 2013, Theor. Comput. Sci..

[88]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[89]  D. Black On the Rationale of Group Decision-making , 1948, Journal of Political Economy.

[90]  Christian Komusiewicz,et al.  Polynomial-Time Data Reduction for the Subset Interconnection Design Problem , 2015, SIAM J. Discret. Math..

[91]  T. Tideman,et al.  Independence of clones as a criterion for voting rules , 1987 .

[92]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[93]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[94]  Nimrod Talmon,et al.  Algorithmic aspects of manipulation and anonymization in social choice and social networks , 2016 .

[95]  Piotr Faliszewski,et al.  Llull and Copeland Voting Computationally Resist Bribery and Constructive Control , 2009, J. Artif. Intell. Res..

[96]  Jérôme Lang,et al.  Voting procedures with incomplete preferences , 2005 .

[97]  Lawrence G. Sager Handbook of Computational Social Choice , 2015 .

[98]  Piotr Faliszewski,et al.  Clone structures in voters' preferences , 2011, EC '12.

[99]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[100]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[101]  Piotr Faliszewski,et al.  Combinatorial voter control in elections , 2014, Theor. Comput. Sci..

[102]  Christian Komusiewicz,et al.  On Explaining Integer Vectors by Few Homogenous Segments , 2013, WADS.

[103]  Toby Walsh,et al.  Incompleteness and incomparability in preference aggregation: Complexity results , 2011, Artif. Intell..

[104]  Michael A. Trick,et al.  Stable matching with preferences derived from a psychological model , 1986 .

[105]  Arkadii M. Slinko,et al.  Is it ever safe to vote strategically? , 2014, Soc. Choice Welf..

[106]  Piotr Faliszewski,et al.  Approximability of Manipulating Elections , 2008, AAAI.

[107]  Vicki Knoblauch,et al.  Recognizing one-dimensional Euclidean preference profiles , 2010 .

[108]  H. Young Extending Condorcet's rule , 1977 .

[109]  Edith Elkind,et al.  Structure in Dichotomous Preferences , 2015, IJCAI.

[110]  Salvador Barberà,et al.  Centre de Referència en Economia Analítica Barcelona Economics Working Paper Series Working Paper n o 57 Choosing How to Choose : Self-Stable Majority Rules and Constitutions , 2004 .

[111]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[112]  Avishek Saha,et al.  Sequential Dependencies , 2009, Proc. VLDB Endow..

[113]  R. McKelvey,et al.  A multistage game representation of sophisticated voting for binary procedures , 1978 .

[114]  Edith Elkind,et al.  On Detecting Nearly Structured Preference Profiles , 2014, AAAI.

[115]  Hans Peters,et al.  Strategy-proof division of a private good when preferences are single-dipped , 1997 .

[116]  Lirong Xia,et al.  Computing the margin of victory for various voting rules , 2012, EC '12.

[117]  Allan H. Meltzer,et al.  A Rational Theory of the Size of Government , 1981, Journal of Political Economy.

[118]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[119]  Tuomas Sandholm,et al.  Optimal Winner Determination Algorithms , 2005 .

[120]  Salvador Barberà,et al.  Author's Personal Copy Games and Economic Behavior Top Monotonicity: a Common Root for Single Peakedness, Single Crossing and the Median Voter Result , 2022 .

[121]  Vincent Conitzer,et al.  When are elections with few candidates hard to manipulate? , 2007, J. ACM.

[122]  Piotr Faliszewski,et al.  Approximation Algorithms for Campaign Management , 2010, WINE.

[123]  Arkadii M. Slinko,et al.  Condorcet domains, median graphs and the single-crossing property , 2015, ArXiv.

[124]  Christian Komusiewicz,et al.  On explaining integer vectors by few homogeneous segments , 2015, J. Comput. Syst. Sci..

[125]  Martin Lackner Incomplete Preferences in Single-Peaked Electorates , 2014, AAAI.

[126]  Nadja Betzler,et al.  Towards a Dichotomy of Finding Possible Winners in Elections Based on Scoring Rules , 2009, MFCS.

[127]  Piotr Faliszewski,et al.  Elections with Few Voters: Candidate Control Can Be Easy , 2014, AAAI.

[128]  P. Pattanaik,et al.  Necessary and Sufficient Conditions for Rational Choice under Majority Decision , 1969 .

[129]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[130]  Donald E. Stokes,et al.  Spatial Models of Party Competition , 1963, American Political Science Review.

[131]  Felix Brandt,et al.  It only takes a few: on the hardness of voting with a constant number of agents , 2013, AAMAS.

[132]  Craig Boutilier,et al.  Multi-Dimensional Single-Peaked Consistency and Its Approximations , 2013, IJCAI.

[133]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[134]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[135]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[136]  Piotr Faliszewski,et al.  Complexity of Shift Bribery in Committee Elections , 2016, AAAI.

[137]  H. Moulin Choosing from a tournament , 1986 .

[138]  Barry R. Weingast,et al.  Uncovered Sets and Sophisticated Voting Outcomes with Implications for Agenda Institutions , 1984 .

[139]  Melvin J. Hinich,et al.  Advances in the Spatial Theory of Voting , 1993 .

[140]  Toby Walsh,et al.  Parliamentary Voting Procedures: Agenda Control, Manipulation, and Uncertainty , 2015, IJCAI.

[141]  M. Balinski,et al.  Majority Judgment: Measuring, Ranking, and Electing , 2011 .

[142]  Joshua S. Gans,et al.  Majority voting with single-crossing preferences , 1996 .

[143]  André Nichterlein,et al.  Degree-constrained editing of small-degree graphs , 2015 .

[144]  René van Bevern Fixed-parameter linear-time algorithms for NP-hard graph and hypergraph problems arising in industrial applications , 2014 .

[145]  Steven J. Brams,et al.  Single-Peakedness and Disconnected Coalitions , 2002 .

[146]  Nadja Betzler,et al.  On the Computation of Fully Proportional Representation , 2011, J. Artif. Intell. Res..

[147]  Nicholas R. Miller A New Solution Set for Tournaments and Majority Voting: Further Graph- Theoretical Approaches to the Theory of Voting , 1980 .

[148]  Gerhard J. Woeginger,et al.  Network-Based Dissolution , 2014, MFCS.

[149]  Lane A. Hemaspaandra,et al.  Schulze and ranked-pairs voting are fixed-parameter tractable to bribe, manipulate, and control , 2015, Annals of Mathematics and Artificial Intelligence.

[150]  Maria Silvia Pini,et al.  Bribery in Voting Over Combinatorial Domains Is Easy , 2012, ISAIM.

[151]  Gerhard J. Woeginger,et al.  Approximability and parameterized complexity of multicover by c-intervals , 2015, Inf. Process. Lett..

[152]  Christian Komusiewicz,et al.  New Races in Parameterized Algorithmics , 2012, MFCS.

[153]  Ken-ichi Inada,et al.  A Note on the Simple Majority Decision Rule , 1964 .

[154]  T. Walsh,et al.  PREFLIB: A Library for Preferences , 2013 .

[155]  Piotr Faliszewski,et al.  Campaign Management Under Approval-Driven Voting Rules , 2011, Algorithmica.

[156]  Piotr Faliszewski,et al.  Prices matter for the parameterized complexity of shift bribery , 2014, Inf. Comput..

[157]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[158]  Stefan Kratsch,et al.  Parameterized complexity of team formation in social networks , 2018, Theor. Comput. Sci..

[159]  Gábor Erdélyi,et al.  Computational Aspects of Nearly Single-Peaked Electorates , 2012, AAAI.

[160]  Vijay Menon,et al.  Reinstating Combinatorial Protections for Manipulation and Bribery in Single-Peaked and Nearly Single-Peaked Electorates , 2016, AAAI.

[161]  M. Satterthwaite,et al.  Strategy-proofness and single-peakedness , 1976 .

[162]  J. Banks Sophisticated voting outcomes and agenda control , 1984 .

[163]  Edith Hemaspaandra,et al.  Bypassing Combinatorial Protections: Polynomial-Time Algorithms for Single-Peaked Electorates , 2010, AAAI.

[164]  Piotr Faliszewski,et al.  Elections with Few Candidates: Prices, Weights, and Covering Problems , 2015, ADT.

[165]  Paul Rothstein,et al.  Order restricted preferences and majority rule , 1990 .

[166]  Fernando A. Tohmé,et al.  Single-Crossing, Strategic Voting and the Median Choice Rule , 2006, Soc. Choice Welf..

[167]  Piotr Faliszewski,et al.  The complexity of manipulative attacks in nearly single-peaked electorates , 2011, TARK XIII.

[168]  Rolf Niedermeier,et al.  Parameterized computational complexity of Dodgson and Young elections , 2008, Inf. Comput..

[169]  Yvonne Herz,et al.  Spatial Models Of Parliamentary Voting , 2016 .

[170]  Noga Alon,et al.  How to Put Through Your Agenda in Collective Binary Decisions , 2013, TEAC.

[171]  Christian Komusiewicz Kernelization, Partially Polynomial Kernels , 2016, Encyclopedia of Algorithms.

[172]  L. Moser,et al.  The Theory of Round Robin Tournaments , 1966 .

[173]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[174]  Michael R. Fellows,et al.  Determining the Winner of a Dodgson Election is Hard , 2010, FSTTCS.

[175]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[176]  A. Hoffman,et al.  Totally-Balanced and Greedy Matrices , 1985 .

[177]  Jörg Rothe,et al.  Taking the final step to a full dichotomy of the possible winner problem in pure scoring rules , 2010, Inf. Process. Lett..

[178]  Kirk Pruhs,et al.  The one-dimensional Euclidean domain: finitely many obstructions are not enough , 2015, Soc. Choice Welf..

[179]  Wulf Gaertner,et al.  A Primer in Social Choice Theory: Revised Edition , 2009 .

[180]  Edith Hemaspaandra,et al.  More Natural Models of Electoral Control by Partition , 2014, ADT.

[181]  Jérôme Lang,et al.  Single-peaked consistency and its complexity , 2008, ECAI.

[182]  Piotr Faliszewski,et al.  The Complexity of Recognizing Incomplete Single-Crossing Preferences , 2015, AAAI.

[183]  G. Thompson,et al.  The Theory of Committees and Elections. , 1959 .

[184]  A. Sen,et al.  Collective Choice and Social Welfare , 2017 .

[185]  Ronald L. Rivest,et al.  Computing the Margin of Victory in IRV Elections , 2011, EVT/WOTE.

[186]  Jean-Claude Falmagne,et al.  A Polynomial Time Algorithm for Unidimensional Unfolding Representations , 1994, J. Algorithms.

[187]  Christian Komusiewicz,et al.  Effective and Efficient Data Reduction for the Subset Interconnection Design Problem , 2013, ISAAC.

[188]  Piotr Faliszewski,et al.  How Hard Is Bribery in Elections? , 2006, J. Artif. Intell. Res..

[189]  Gábor Erdélyi,et al.  Manipulation of k-Approval in Nearly Single-Peaked Electorates , 2015, ADT.

[190]  Ildikó Schlotter,et al.  Multivariate Complexity Analysis of Swap Bribery , 2010, Algorithmica.

[191]  Frank Westhoff,et al.  Existence of equilibria in economies with a local public good , 1977 .

[192]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[193]  Olivier Spanjaard,et al.  Bounded Single-Peaked Width and Proportional Representation , 2012, ECAI.

[194]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[195]  Guillaume Haeringer,et al.  A characterization of the single-peaked domain , 2011, Soc. Choice Welf..

[196]  Dominik Peters,et al.  Recognising Multidimensional Euclidean Preferences , 2016, AAAI.

[197]  Gerhard J. Woeginger,et al.  Network-Based Vertex Dissolution , 2014, SIAM J. Discret. Math..