Integrating a thermistor flowmeter and time lapse imagery to monitor sponge (Porifera) behaviour
暂无分享,去创建一个
[1] O. Hoegh‐Guldberg,et al. Day–night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis Thiele, 1900 , 2016 .
[2] P. Ridd,et al. Temporal Patterns in Seawater Quality from Dredging in Tropical Environments , 2015, PloS one.
[3] J. Pawlik,et al. Trait-mediated ecosystem impacts: how morphology and size affect pumping rates of the Caribbean giant barrel sponge , 2014 .
[4] J. Hammel,et al. A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System , 2014, PloS one.
[5] S. Leys,et al. Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges , 2014, BMC Evolutionary Biology.
[6] C. Storlazzi,et al. SedPods: a low-cost coral proxy for measuring net sedimentation , 2013, Coral Reefs.
[7] Kevin W Eliceiri,et al. NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.
[8] J. Weisz,et al. Behavioral and morphological changes caused by thermal stress in the Great Barrier Reef sponge Rhopaloeides odorabile , 2012 .
[9] Julia Herzen,et al. The contractile sponge epithelium sensu lato – body contraction of the demosponge Tethya wilhelma is mediated by the pinacoderm , 2011, Journal of Experimental Biology.
[10] Marie-Lise Schläppy,et al. Heterogeneous oxygenation resulting from active and passive flow in two Mediterranean sponges, Dysida avara and Chondrosia reniformis , 2010 .
[11] S. Leys,et al. Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system , 2008 .
[12] J. Weisz,et al. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? , 2008, Oecologia.
[13] S. Leys,et al. Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge , 2007, Journal of Experimental Biology.
[14] M. Nickel,et al. Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera) , 2006, Frontiers in Zoology.
[15] R. Meech,et al. Physiology of coordination in sponges , 2006 .
[16] Michael Nickel,et al. Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae) , 2004, Journal of Experimental Biology.
[17] R. Meech,et al. Impulse conduction in a sponge. , 1999, The Journal of experimental biology.
[18] M. Ilan,et al. The Life of a Sponge in a Sandy Lagoon. , 1995, The Biological bulletin.
[19] G. Mackie,et al. Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses in rhabdocalyptus dawsoni (lambe, 1873) , 1983 .
[20] T. Gerrodette,et al. Sediment-induced reduction in the pumping rate of the tropical sponge Verongia lacunosa , 1979 .
[21] N. Weissenfels. Bau und funktion des sü\wasserschwamms Ephydatia fluviatilis L. (porifera) , 1975, Zeitschrift für Morphologie der Tiere.
[22] F. Harrison. Phase contrast photomicrography of cellular behaviour in spongillid porocytes (Porifera: Spongillidae) , 1972, Hydrobiologia.
[23] H. Reiswig. In situ pumping activities of tropical Demospongiae , 1971 .
[24] C. Schönberg,et al. Why bioeroding sponges may be better hosts for symbiotic dinoflagellates than many corals , 2007 .
[25] J. P. Moore. A thermistor based sensor for flow measurement in water , 2003 .
[26] R. E. Grant. Notice of a new zoophyte (Cliona celata, Gr.) from the Firth of Forth , 1826 .