Thermal Willis Coupling in Spatiotemporal Diffusive Metamaterials.

Willis coupling generically stems from bianisotropy or chirality in wave systems. Nevertheless, those schemes are naturally unavailable in diffusion systems described by a single constitutive relation governed by the Fourier law. Here, we report spatiotemporal diffusive metamaterials by modulating thermal conductivity and mass density in heat transfer. The Fourier law should be modified after homogenizing spatiotemporal parameters, featuring thermal Willis coupling between heat flux and temperature change rate. Thermal Willis coupling drives asymmetric heat diffusion, and the diffusion direction is reversible at a critical point determined by the degree of spatiotemporal modulation. Moreover, thermal Willis coupling stands robustly even when only thermal conductivity is modulated. These results may have potential applications for directional diffusion and offer insights into asymmetric manipulation of nonequilibrium mass and energy transfer.

[1]  Geoff Wehmeyer,et al.  Time-periodic thermal rectification in heterojunction thermal diodes , 2022, International Journal of Heat and Mass Transfer.

[2]  N. Engheta,et al.  Spatiotemporal isotropic-to-anisotropic meta-atoms , 2021, 2106.12471.

[3]  Mordechai Segev,et al.  Highlighting photonics: looking into the next decade , 2021, eLight.

[4]  Jiping Huang,et al.  Nonreciprocity and isolation induced by an angular momentum bias in convection-diffusion systems , 2021 .

[5]  L. Quan,et al.  Odd Willis coupling induced by broken time-reversal symmetry , 2021, Nature communications.

[6]  Jiping Huang,et al.  Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application , 2021, Physics Reports.

[7]  Jensen Li,et al.  Analytical modeling of one-dimensional resonant asymmetric and reciprocal acoustic structures as Willis materials , 2021, New Journal of Physics.

[8]  Jensen Li,et al.  Acoustic Willis meta-atom beyond the bounds of passivity and reciprocity , 2021 .

[9]  Ying Li,et al.  Reciprocity of thermal diffusion in time-modulated systems , 2021, Nature communications.

[10]  Cheng-Wei Qiu,et al.  Thermal camouflaging metamaterials , 2021 .

[11]  G. Mazza,et al.  Thermal dynamics and electronic temperature waves in layered correlated materials , 2021, Nature Communications.

[12]  Kaipeng Liu,et al.  Tunable analog thermal material , 2020, Nature Communications.

[13]  Guangzu Zhang,et al.  Electric-field-induced modulation of thermal conductivity in poly(vinylidene fluoride) , 2020 .

[14]  N. Engheta Metamaterials with high degrees of freedom: space, time, and more , 2020, Frontiers in Optics and Photonics.

[15]  S. Fan,et al.  Transforming heat transfer with thermal metamaterials and devices , 2020, Nature Reviews Materials.

[16]  N. Engheta,et al.  Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials , 2020, Nature Communications.

[17]  Jiping Huang Theoretical Thermotics , 2019 .

[18]  Jianlin Zhao,et al.  Anti–parity-time symmetry in diffusive systems , 2019, Science.

[19]  T. White,et al.  Light-triggered thermal conductivity switching in azobenzene polymers , 2019, Proceedings of the National Academy of Sciences.

[20]  S. Marburg,et al.  Acoustic meta-atom with maximum Willis coupling , 2018, 1812.02318.

[21]  Ying Li,et al.  Thermal meta-device in analogue of zero-index photonics , 2018, Nature Materials.

[22]  M. Maldovan,et al.  Breaking separation limits in membrane technology , 2018, Journal of Membrane Science.

[23]  M. Maldovan,et al.  Mass diffusion cloaking and focusing with metamaterials , 2017 .

[24]  M. Haberman,et al.  Reciprocity, passivity and causality in Willis materials , 2016, Proceedings of the Royal Society A.

[25]  Jian-Shiuh Chen,et al.  Cloak for curvilinearly anisotropic media in conduction , 2008 .

[26]  Jiping Huang,et al.  Shaped graded materials with an apparent negative thermal conductivity , 2008 .

[27]  Graeme W Milton,et al.  On modifications of Newton's second law and linear continuum elastodynamics , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  S. Guenneau,et al.  Willis coupling in water waves , 2021, New Journal of Physics.

[29]  J. Willis Variational principles for dynamic problems for inhomogeneous elastic media , 1981 .