Shared computational mechanism for tilt compensation accounts for biased verticality percepts in motion and pattern vision.

To determine the direction of object motion in external space, the brain must combine retinal motion signals and information about the orientation of the eyes in space. We assessed the accuracy of this process in eight laterally tilted subjects who aligned the motion direction of a random-dot pattern (30% coherence, moving at 6 degrees /s) with their perceived direction of gravity (motion vertical) in otherwise complete darkness. For comparison, we also tested the ability to align an adjustable visual line (12 degrees diameter) to the direction of gravity (line vertical). For small head tilts (<40 degrees ), systematic errors in either task were almost negligible. In contrast, tilts >60 degrees revealed a pattern of large systematic errors (often >30 degrees ) that was virtually identical in both tasks. Regression analysis confirmed that mean errors in the two tasks were closely related, with slopes close to 1.0 and correlations >0.89. Control experiments ruled out that motion settings were based on processing of individual single-dot paths. We conclude that the conversion of both motion direction and line orientation on the retina into a spatial frame of reference involves a shared computational strategy. Simulations with two spatial-orientation models suggest that the pattern of systematic errors may be the downside of an optimal strategy for dealing with imperfections in the tilt signal that is implemented before the reference-frame transformation.

[1]  Guy A. Orban,et al.  The neuronal machinery involved in successive orientation discrimination , 1998, Progress in Neurobiology.

[2]  F. Hlavacka,et al.  Multisensory Control of Posture , 1995, Springer US.

[3]  Heinrich H. Bülthoff,et al.  A Bayesian model of the disambiguation of gravitoinertial force by visual cues , 2007, Experimental Brain Research.

[4]  W. Ehrenstein,et al.  Psychophysical Methods , 1999 .

[5]  H. Mittelstaedt A new solution to the problem of the subjective vertical , 1983, Naturwissenschaften.

[6]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. , 1976, Journal of neurophysiology.

[7]  A M Bronstein,et al.  The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders. , 1996, Brain : a journal of neurology.

[8]  E. J. Morris,et al.  Visual motion processing and sensory-motor integration for smooth pursuit eye movements. , 1987, Annual review of neuroscience.

[9]  H Mittelstaedt,et al.  The Role of the Otoliths in Perception of the Vertical and in Path Integration , 1999, Annals of the New York Academy of Sciences.

[10]  Jan A M Van Gisbergen,et al.  Interpretation of a discontinuity in the sense of verticality at large body tilt. , 2004, Journal of neurophysiology.

[11]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.

[12]  H. Mittelstaedt The subjective vertical as a function of visual and extraretinal cues. , 1986, Acta psychologica.

[13]  Christian Darlot,et al.  Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements , 2002, Biological Cybernetics.

[14]  G. DeAngelis,et al.  A functional link between area MSTd and heading perception based on vestibular signals , 2007, Nature Neuroscience.

[15]  A M Bronstein,et al.  The Interaction of Otolith and Proprioceptive Information in the Perception of Verticality: The Effects of Labyrinthine and CNS Disease , 1999, Annals of the New York Academy of Sciences.

[16]  Michel Guerraz,et al.  Reference frames and haptic perception of orientation: Body and head tilt effects on the oblique effect , 2001, Perception & psychophysics.

[17]  D M Merfeld,et al.  Modeling human vestibular responses during eccentric rotation and off vertical axis rotation. , 1995, Acta oto-laryngologica. Supplementum.

[18]  J. Douglas Crawford,et al.  Optimal transsaccadic integration explains distorted spatial perception , 2003, Nature.

[19]  I. Donaldson Control of gaze by brain stem neurons Proceedings of the symposium held in the Abbaye de Royaumont. Paris 12–15 July, 1977.Developments in Neuroscience, vol. 1.R. Baker &A. Berthoz (eds). Elsevier/North Holland Biomedical Press, Amsterdam (1977). 514 + xv pp., $59.95 , 1978, Neuroscience.

[20]  Ian P. Howard,et al.  Human visual orientation , 1982 .

[21]  Bernhard J. M. Hess,et al.  Influence of dynamic tilts on the perception of earth-vertical , 2003, Experimental Brain Research.

[22]  Alexander H. Wertheim,et al.  The Direct versus Inferential controversy revisited , 2000 .

[23]  Dora E Angelaki,et al.  Spatial Reference Frames of Visual, Vestibular, and Multimodal Heading Signals in the Dorsal Subdivision of the Medial Superior Temporal Area , 2007, The Journal of Neuroscience.

[24]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[25]  Aya Takemura,et al.  MST neurons code for visual motion in space independent of pursuit eye movements. , 2007, Journal of neurophysiology.

[26]  R. Andersen,et al.  Posterior parietal cortex. , 1989, Reviews of oculomotor research.

[27]  Ian S. Curthoys,et al.  The role of ocular torsion in visual measures of vestibular function , 1996, Brain Research Bulletin.

[28]  Alexander H. Wertheim,et al.  Motion perception during selfmotion: The direct versus inferential controversy revisited , 1994, Behavioral and Brain Sciences.

[29]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. , 1976, Journal of neurophysiology.

[30]  Jean Laurens,et al.  Bayesian processing of vestibular information , 2007, Biological Cybernetics.

[31]  T. Brandt,et al.  The Vestibular Cortex: Its Locations, Functions, and Disorders , 1999, Annals of the New York Academy of Sciences.

[32]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[33]  J A Crowell,et al.  Extraretinal and retinal amplitude and phase errors during Filehne illusion and path perception , 2000, Perception & psychophysics.

[34]  A. D. Van Beuzekom,et al.  Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. , 2000 .

[35]  P. Thier,et al.  Posterior Parietal Cortex Neurons Encode Target Motion in World-Centered Coordinates , 2004, Neuron.

[36]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.

[37]  D M Merfeld,et al.  Humans use internal models to estimate gravity and linear acceleration , 1999, Nature.

[38]  Marousa Pavlou,et al.  Effect of semicircular canal stimulation on the perception of the visual vertical. , 2003, Journal of neurophysiology.

[39]  J. V. Van Gisbergen,et al.  Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation. , 2006, Journal of neurophysiology.

[40]  Håkan Johansson,et al.  Modern Techniques in Neuroscience Research , 1999, Springer Berlin Heidelberg.

[41]  L R Young,et al.  Influence of head orientation on visually induced pitch and roll sensation. , 1975, Aviation, space, and environmental medicine.

[42]  Johannes Dichgans,et al.  Motion habituation: Inverted self-motion perception and optokinetic after-nystagmus , 2004, Experimental Brain Research.

[43]  O J Grüsser,et al.  Localization and responses of neurones in the parieto‐insular vestibular cortex of awake monkeys (Macaca fascicularis). , 1990, The Journal of physiology.

[44]  J. V. Van Gisbergen,et al.  Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. , 2000, Journal of neurophysiology.

[45]  S. Klein,et al.  Measuring, estimating, and understanding the psychometric function: A commentary , 2001, Perception & psychophysics.

[46]  Horst Mittelstaedt,et al.  The Formation of the Visual and the Postural Vertical , 1995 .

[47]  Orbach PII: S0042-6989(01)00209-7 , 2001 .

[48]  D. Angelaki,et al.  Purkinje Cells in Posterior Cerebellar Vermis Encode Motion in an Inertial Reference Frame , 2007, Neuron.

[49]  R. Krauzlis Recasting the smooth pursuit eye movement system. , 2004, Journal of neurophysiology.

[50]  X. M. Sauvan,et al.  Orientation Constancy in Neurons of Monkey Visual Cortex , 1999 .

[51]  Steven C. Dakin,et al.  Local and global limitations on direction integration assessed using equivalent noise analysis , 2005, Vision Research.

[52]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. , 1988, Journal of neurophysiology.

[54]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[55]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[56]  Jan L. Souman,et al.  Vertical object motion during horizontal ocular pursuit: compensation for eye movements increases with presentation duration , 2005, Vision Research.

[57]  Dora E Angelaki,et al.  Visual and Nonvisual Contributions to Three-Dimensional Heading Selectivity in the Medial Superior Temporal Area , 2006, The Journal of Neuroscience.

[58]  L. Young,et al.  Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. , 1974, Brain research.

[59]  U Rosenhall,et al.  Vestibular Macular Mapping in Man , 1972, The Annals of otology, rhinology, and laryngology.

[60]  Brent R Beutter,et al.  Human discrimination of visual direction of motion with and without smooth pursuit eye movements. , 2003, Journal of vision.

[61]  Bernhard J. M. Hess,et al.  Self-motion-induced eye movements: effects on visual acuity and navigation , 2005, Nature Reviews Neuroscience.

[62]  Yoshiharu Sakata,et al.  The Vestibular Cortex , 2002 .

[63]  Kathleen Cullen,et al.  The Vestibular System , 2003 .

[64]  G. Westheimer Meridional anisotropy in visual processing: implications for the neural site of the oblique effect , 2003, Vision Research.

[65]  J. V. Van Gisbergen,et al.  Verticality perception during off-vertical axis rotation. , 2007, Journal of neurophysiology.

[66]  J Dichgans,et al.  Optokinetic-graviceptive interaction in different head positions. , 1974, Acta oto-laryngologica.

[67]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[68]  Felix Wichmann,et al.  The psychometric function: II. Bootstrap-based confidence intervals and sampling , 2001, Perception & psychophysics.

[69]  A. D. V. Beuzekom,et al.  PII: S0042-6989(01)00144-4 , 2001 .

[70]  Ulf Rosenhall The vestibular sensory regions in man : a morphological study , 1974 .

[71]  James R Müller,et al.  Microstimulation of the superior colliculus focuses attention without moving the eyes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Matteo Carandini,et al.  Measuring the brain's assumptions , 2006, Nature Neuroscience.

[73]  Fred Mast,et al.  Perceived body position and the visual horizontal , 1996, Brain Research Bulletin.

[74]  Simone B. Bortolami,et al.  Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt , 2006, Experimental Brain Research.

[75]  William H. Press,et al.  Numerical recipes in C , 2002 .

[76]  M. Sanders Control of Gaze by Brain Stem Neurons , 1978 .

[77]  C. Duffy,et al.  Heading representation in MST: sensory interactions and population encoding. , 2003, Journal of neurophysiology.

[78]  M Dieterich,et al.  Vestibular cortex lesions affect the perception of verticality , 1994, Annals of neurology.

[79]  Jean Laurens,et al.  Bayesian processing of vestibular information , 2007, Biological Cybernetics.

[80]  Hermann Aubert,et al.  Eine scheinbare bedeutende Drehung von Objecten bei Neigung des Kopfes nach rechts oder links , 1861, Archiv für pathologische Anatomie und Physiologie und für klinische Medicin.

[81]  F. Bremmer,et al.  Perception of self-motion from visual flow , 1999, Trends in Cognitive Sciences.

[82]  Michael Erb,et al.  Cerebrocerebellar Circuits for the Perceptual Cancellation of Eye-movement-induced Retinal Image Motion , 2006, Journal of Cognitive Neuroscience.