The spin axes of globular clusters and correlations with gamma-ray emission

A growing number of Milky Way globular clusters have been identified to possess a noticeable degree of solid-body rotation. For several clusters, the combination of stellar proper motions and radial velocities allows for 3-dimensional spin axes to be extracted. In this paper we consider the orientations of these spin axes, and ask whether they are correlated with any other properties of the clusters -- either global properties to do with their orbits and origin, or internal properties related to the cluster composition. We discuss the possibility of alignments between the spin axes of globular clusters, chemodynamical groupings, and their orbital poles. We also point out a previously unidentified negative correlation between the measured gamma-ray emissivities and the inclination of the globular cluster spins with respect to the line of sight. Given that this correlation is not present in other wavelengths, we cannot conclusively attribute it solely to sampling bias. If the correlation holds up to scrutiny with more data, it may be indicative of sources of anisotropic gamma-ray emission in globular clusters. We discuss the plausibility of such an anisotropy arising from a population of dynamically formed millisecond pulsars with some degree of spin-orbit alignment.

[1]  L. Bedin,et al.  First observational evidence of a relation between globular clusters’ internal rotation and stellar masses , 2023, Monthly Notices of the Royal Astronomical Society: Letters.

[2]  I. Cognard,et al.  Neutron star mass estimates from gamma-ray eclipses in spider millisecond pulsar binaries , 2023, Nature Astronomy.

[3]  P. McCullough,et al.  A Study of Stellar Spins in 15 Open Clusters , 2023, The Astrophysical Journal.

[4]  France,et al.  The accretion history of the Milky Way. I. How it shapes globular clusters and dwarf galaxies , 2022, 2212.07441.

[5]  R. Naidu,et al.  What is Missing from the Local Stellar Halo? , 2022, 2211.04562.

[6]  P. Matteo,et al.  The distribution of globular clusters in kinematic spaces does not trace the accretion history of the host galaxy , 2022, Astronomy & Astrophysics.

[7]  M. Cropper,et al.  Gaia Data Release 3. Properties and validation of the radial velocities , 2022, Astronomy & Astrophysics.

[8]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[9]  P. J. Richards,et al.  Gaia Data Release 3. Chemical cartography of the Milky Way , 2022, Astronomy & Astrophysics.

[10]  Wenxia Pei,et al.  Influence of the Gaia–Sausage–Enceladus on the Density Shape of the Galactic Stellar Halo Revealed by Halo K Giants from the LAMOST Survey , 2022, The Astronomical Journal.

[11]  S. Horiuchi,et al.  Gamma-ray emission from the Sagittarius dwarf spheroidal galaxy due to millisecond pulsars , 2022, Nature Astronomy.

[12]  D. A. García-Hernández,et al.  Is Terzan 5 the remnant of a building block of the Galactic bulge? Evidence from APOGEE , 2022, Monthly Notices of the Royal Astronomical Society.

[13]  M. Regis,et al.  Upper limits on the dark matter content in globular clusters , 2022, Journal of Cosmology and Astroparticle Physics.

[14]  E. Dalessandro,et al.  The ESO-VLT MIKiS Survey Reloaded: Velocity Dispersion Profile and Rotation Curve of NGC 1904 , 2022, 2203.07294.

[15]  C. Frenk,et al.  The Chemo-Dynamical Groups of Galactic Globular Clusters , 2022, 2202.00591.

[16]  N. Martin,et al.  The Global Dynamical Atlas of the Milky Way Mergers: Constraints from Gaia EDR3–based Orbits of Globular Clusters, Stellar Streams, and Satellite Galaxies , 2022, The Astrophysical Journal.

[17]  E. Vitral,et al.  Properties of globular clusters formed in dark matter mini-halos , 2021, Astronomy & Astrophysics.

[18]  Zhongxiang Wang,et al.  Gamma-Ray Spectral Properties of the Galactic Globular Clusters: Constraint on the Number of Millisecond Pulsars , 2021, The Astrophysical Journal.

[19]  Alan C. Evans,et al.  Dark and luminous mass components of Omega Centauri with stellar kinematics , 2021, 2109.10998.

[20]  D. Feuillet,et al.  The GALAH Survey: Chemical tagging and chrono-chemodynamics of accreted halo stars with GALAH+ DR3 and $Gaia$ eDR3 , 2021, 2109.04059.

[21]  E. Dalessandro,et al.  Early dynamics and violent relaxation of multimass rotating star clusters , 2021, Monthly Notices of the Royal Astronomical Society.

[22]  Marseille,et al.  The HST large programme on ω Centauri – IV. Catalogue of two external fields , 2021, Monthly Notices of the Royal Astronomical Society.

[23]  R. Crocker,et al.  Millisecond pulsars from accretion-induced collapse as the origin of the Galactic Centre gamma-ray excess signal , 2021, Nature Astronomy.

[24]  P. Cargile,et al.  Reconstructing the Last Major Merger of the Milky Way with the H3 Survey , 2021, The Astrophysical Journal.

[25]  H. Baumgardt,et al.  Gaia EDR3 view on galactic globular clusters , 2021, Monthly Notices of the Royal Astronomical Society.

[26]  S. Horiuchi,et al.  Evidence for a high-energy tail in the gamma-ray spectra of globular clusters , 2021, Monthly Notices of the Royal Astronomical Society.

[27]  A. Harding The Emission Physics of Millisecond Pulsars , 2021, 2101.05751.

[28]  P. J. Richards,et al.  Gaia Early Data Release 3: Summary of the contents and survey properties , 2020, 2012.01533.

[29]  M. Hilker,et al.  Absolute $V$-band magnitudes and mass-to-light ratios of Galactic globular clusters , 2020, Publications of the Astronomical Society of Australia.

[30]  K. Cunha,et al.  Evidence from APOGEE for the presence of a major building block of the halo buried in the inner Galaxy , 2020, Monthly Notices of the Royal Astronomical Society.

[31]  J. Norris,et al.  Gaia and Hubble Unveil the Kinematics of Stellar Populations in the Type II Globular Clusters ω Centauri and M22 , 2020, The Astrophysical Journal.

[32]  Benjamin D. Johnson,et al.  Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure , 2020, The Astrophysical Journal.

[33]  A. Piatti Discovery of rotation axis alignments in Milky Way globular clusters , 2020, Astronomy & Astrophysics.

[34]  A. Sollima The eye of Gaia on globular clusters structure: tidal tails , 2020, 2004.13754.

[35]  J. Kruijssen,et al.  Kraken reveals itself – the merger history of the Milky Way reconstructed with the E-MOSAICS simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[36]  S. Martell,et al.  The GALAH Survey: Chemically tagging the Fimbulthul stream to the globular cluster ω Centauri , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  V. Belokurov,et al.  The biggest splash , 2019, Monthly Notices of the Royal Astronomical Society.

[38]  R. Massey,et al.  The glow of annihilating dark matter in Omega Centauri , 2019, 1907.08564.

[39]  A. Helmi,et al.  Origin of the system of globular clusters in the Milky Way , 2019, Astronomy & Astrophysics.

[40]  Cambridge,et al.  Evidence for two early accretion events that built the Milky Way stellar halo , 2019, Monthly Notices of the Royal Astronomical Society.

[41]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[42]  P. Bianchini,et al.  Identification of the long stellar stream of the prototypical massive globular cluster ω Centauri , 2019, Nature Astronomy.

[43]  M. Hilker,et al.  The eye of Gaia on globular clusters kinematics: internal rotation , 2019, Monthly Notices of the Royal Astronomical Society.

[44]  M. Lehnert,et al.  The Milky Way has no in-situ halo other than the heated thick disc , 2018, Astronomy & Astrophysics.

[45]  J. Bland-Hawthorn,et al.  Star Clusters Across Cosmic Time , 2018, Annual Review of Astronomy and Astrophysics.

[46]  A. Helmi,et al.  Characterization and history of the Helmi streams with Gaia DR2 , 2018, Astronomy & Astrophysics.

[47]  E. Balbinot,et al.  Linking the rotation of a cluster to the spins of its stars: the kinematics of NGC 6791 and NGC 6819 in 3D , 2018, Monthly Notices of the Royal Astronomical Society.

[48]  R. Nemmen,et al.  Milky Way globular clusters in γ-rays: analysing the dynamical formation of millisecond pulsars , 2018, Monthly Notices of the Royal Astronomical Society.

[49]  E. Vasiliev Systematic errors in Gaia DR2 astrometry and their impact on measurements of internal kinematics of star clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[50]  J. Read,et al.  The alignment is in their stars: on the spin-alignment of stars in star clusters , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[51]  C. Prieto,et al.  The origin of accreted stellar halo populations in the Milky Way using APOGEE,Gaia, and the EAGLE simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  E. Vasiliev Proper motions and dynamics of the Milky Way globular cluster system fromGaiaDR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[53]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[54]  J. Kruijssen,et al.  The formation and assembly history of the Milky Way revealed by its globular cluster population , 2018, Monthly Notices of the Royal Astronomical Society.

[55]  P. Bianchini,et al.  The internal rotation of globular clusters revealed by Gaia DR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[56]  T. Lacroix,et al.  Understanding the γ -ray emission from the globular cluster 47 Tuc: Evidence for dark matter? , 2018, Physical Review D.

[57]  Sergey E. Koposov,et al.  The Sausage Globular Clusters , 2018, The Astrophysical Journal.

[58]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[59]  Xiang-Dong Li,et al.  A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources , 2018, 1803.09892.

[60]  G. Kovacs Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster , 2018, 1803.03619.

[61]  Sergey E. Koposov,et al.  Co-formation of the disc and the stellar halo , 2018, 1802.03414.

[62]  R. Crocker,et al.  On the formation of neutron stars via accretion-induced collapse in binaries , 2018, Monthly Notices of the Royal Astronomical Society.

[63]  A. Varri,et al.  The complex kinematics of rotating star clusters in a tidal field , 2018, 1801.06236.

[64]  Carmela Lardo,et al.  Multiple Stellar Populations in Globular Clusters , 2017, Annual Review of Astronomy and Astrophysics.

[65]  Martin M. Roth,et al.  A stellar census in globular clusters with MUSE: The contribution of rotation to cluster dynamics studied with 200 000 stars , 2017, 1710.07257.

[66]  Bertrand Mennesson,et al.  Theia: Faint objects in motion or the new astrometry frontier , 2017, 1707.01348.

[67]  E. Friel,et al.  Internal Rotation in the Globular Cluster M53 , 2017 .

[68]  A. Varri,et al.  Kinematical evolution of tidally limited star clusters: rotational properties , 2017, 1704.05918.

[69]  J. Anderson,et al.  The HST large programme on omega Centauri - I. Multiple stellar populations at the bottom of the main sequence probed in NIR-Optical , 2017, 1704.00418.

[70]  P. Hennebelle,et al.  Spin alignment of stars in old open clusters , 2017, Nature Astronomy.

[71]  M. Mapelli Rotation in young massive star clusters , 2017, 1702.00415.

[72]  N. Hambly,et al.  Proposal title: GaiaNIR Combining optical and Near-Infra-Red (NIR) capabilities with Time-Delay-Integration (TDI) sensors for a future Gaia-like mission , 2016 .

[73]  A. Varri,et al.  Kinematical evolution of tidally limited star clusters: the role of retrograde stellar orbits , 2016, 1606.06743.

[74]  L. Fu,et al.  Detection of gamma-ray emission from globular clusters M15, NGC 6397, 5904, 6218 and 6139 with Fermi-LAT , 2016, 1603.02358.

[75]  E. Balbinot,et al.  Biases in the determination of dynamical parameters of star clusters: today and in the Gaia era , 2015, 1505.02598.

[76]  European Space Research,et al.  Detecting stars, galaxies, and asteroids with Gaia , 2015, 1502.00454.

[77]  C. Tout,et al.  Formation of redbacks via accretion-induced collapse , 2014, 1410.8352.

[78]  P. Bianchini,et al.  A study of rotating globular clusters. The case of the old, metal-poor globular cluster NGC 4372 , 2014, 1406.1552.

[79]  Michael J. Williams,et al.  CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS , 2014, 1405.1722.

[80]  T. Tauris,et al.  On the non-detection of γ-rays from energetic millisecond pulsars – dependence on viewing geometry , 2014, 1401.2773.

[81]  C. Tout,et al.  The nature of millisecond pulsars with helium white dwarf companions , 2013, 1310.8356.

[82]  S. Csizmadia,et al.  VARIABILITY SURVEY IN THE CoRoT SRa01 FIELD: IMPLICATIONS OF ECLIPSING BINARY DISTRIBUTION ON CLUSTER FORMATION IN NGC 2264 , 2013, 1306.5908.

[83]  P. Bianchini,et al.  ROTATING GLOBULAR CLUSTERS , 2013, 1305.6025.

[84]  The Fermi-LAT Collaboration The Second Fermi Large Area Telescope Catalog of Gamma-ray Pulsars , 2013, 1305.4385.

[85]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[86]  P. Bianchini,et al.  The flattening of globular clusters: internal rotation or velocity anisotropy? , 2013, 1302.0717.

[87]  A. Kong,et al.  SEARCH FOR PULSED γ-RAY EMISSION FROM GLOBULAR CLUSTER M28 , 2013, 1302.0610.

[88]  The Fermi-LAT Collaboration Fermi Detection of a Luminous γ-Ray Pulsar in a Globular Cluster , 2011, Science.

[89]  R. Ibata,et al.  AAOmega spectroscopy of 29 351 stars in fields centered on ten Galactic globular clusters , 2011, 1104.2628.

[90]  J. Chiang,et al.  A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope , 2010, 1003.3588.

[91]  A. Kong,et al.  THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS , 2010, 1009.2278.

[92]  M. Bellazzini,et al.  The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge , 2009, Nature.

[93]  D. Thompson,et al.  Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi , 2009, Science.

[94]  C. Venter,et al.  PREDICTIONS OF GAMMA-RAY EMISSION FROM GLOBULAR CLUSTER MILLISECOND PULSARS ABOVE 100 MeV , 2009, 0903.3031.

[95]  Italy.,et al.  The Rotation of Subpopulations in ω Centauri , 2007, 0704.2962.

[96]  W. Bednarek,et al.  High-energy γ-rays from globular clusters , 2007, astro-ph/0701522.

[97]  R. P. van der Marel,et al.  Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters , 2005, astro-ph/0605132.

[98]  S. Cassisi,et al.  ω Centauri: The Population Puzzle Goes Deeper , 2004, astro-ph/0403112.

[99]  K. Freeman,et al.  Formation of ω Centauri from an Ancient Nucleated Dwarf Galaxy , 2003, astro-ph/0310348.

[100]  Jay Anderson,et al.  The Rotation of the Globular Cluster 47 Tucanae in the Plane of the Sky , 2003 .

[101]  P. T. de Zeeuw,et al.  Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way , 1999, Nature.

[102]  K. Freeman,et al.  The Giant Branch of omega Centauri. V. The Calcium Abundance Distribution , 1996 .

[103]  N. Suntzeff,et al.  The abundance spread among giants and subgiants in the globular cluster omega centauri , 1996, astro-ph/9601013.

[104]  Kaiyou Chen Gamma-ray emission from millisecond pulsars in globular clusters , 1991, Nature.

[105]  Richard H. Byrd,et al.  Algorithm 676: ODRPACK: software for weighted orthogonal distance regression , 1989, TOMS.

[106]  P. Boggs,et al.  ODRPACK Software for Weighted Orthogonal Distance Regression. , 1987 .

[107]  V. Radhakrishnan,et al.  On the origin of the recently discovered ultra-rapid pulsar , 1982 .

[108]  Joseph H. Taylor,et al.  Improved parameters for 67 pulsars from timing observations , 1982 .

[109]  K. Nomoto,et al.  Supernova Triggered by Electron Captures , 1980 .

[110]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[111]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[112]  D. Lynden-Bell,et al.  Can Spherical Clusters Rotate , 1960 .

[113]  A. Helmi,et al.  Gaia Early Data Release 3 Catalogue validation , 2021 .

[114]  J. J. González-Vidal,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[115]  D. Abts Streams , 2020, Grundkurs JAVA.

[116]  P. J. Richards,et al.  Gaia Early Data Release 3 Summary of the contents and survey properties , 2020 .

[117]  P. J. Richards,et al.  Gaia Data Release 2 Gaia Data Release 2 Kinematics of globular clusters and dwarf galaxies around the Milky Way ? , 2019 .

[118]  P. Bianchini,et al.  A study of rotating globular clusters , 2014 .

[119]  J. Norris,et al.  The Giant Branch of Omega Centauri. III. C, N, O and Heavy-Element Abundances for 15 Red Giants , 1989 .

[120]  S. Djorgovski,et al.  Dynamical Models of Elliptical Galaxies , 1987 .

[121]  S. M. Fall,et al.  Rotation and Flattening of Globular Clusters , 1985 .