A Cluster-Randomized Trial of Hydroxychloroquine as Prevention of Covid-19 Transmission and Disease

Background Current strategies for preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are limited to non-pharmacological interventions. Hydroxychloroquine (HCQ) has been proposed as a postexposure therapy to prevent Coronavirus disease 2019 (Covid-19) but definitive evidence is lacking. Methods We conducted an open-label, cluster-randomized trial including asymptomatic contacts exposed to a PCR-positive Covid-19 case in Catalonia, Spain. Clusters were randomized to receive no specific therapy (control arm) or HCQ 800mg once, followed by 400mg daily for 6 days (intervention arm). The primary outcome was PCR-confirmed symptomatic Covid-19 within 14 days. The secondary outcome was SARS-CoV-2 infection, either symptomatically compatible or a PCR-positive result regardless of symptoms. Adverse events (AEs) were assessed up to 28 days. Results The analysis included 2,314 healthy contacts of 672 Covid-19 index cases identified between Mar 17 and Apr 28, 2020. A total of 1,198 were randomly allocated to usual care and 1,116 to HCQ therapy. There was no significant difference in the primary outcome of PCR-confirmed, symptomatic Covid-19 disease (6.2% usual care vs. 5.7% HCQ; risk ratio 0.89 [95% confidence interval 0.54-1.46]), nor evidence of beneficial effects on prevention of SARS-CoV-2 transmission (17.8% usual care vs. 18.7% HCQ). The incidence of AEs was higher in the intervention arm than in the control arm (5.9% usual care vs 51.6% HCQ), but no treatment-related serious AEs were reported. Conclusions Postexposure therapy with HCQ did not prevent SARS-CoV-2 disease and infection in healthy individuals exposed to a PCR-positive case. Our findings do not support HCQ as postexposure prophylaxis for Covid-19.

[1]  X. Tang,et al.  Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections , 2020, Nature Medicine.

[2]  Emily G McDonald,et al.  A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19 , 2020, The New England journal of medicine.

[3]  L. Kucirka,et al.  Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure , 2020, Annals of Internal Medicine.

[4]  P. Zimetbaum,et al.  Risk of QT Interval Prolongation Associated With Use of Hydroxychloroquine With or Without Concomitant Azithromycin Among Hospitalized Patients Testing Positive for Coronavirus Disease 2019 (COVID-19). , 2020, JAMA cardiology.

[5]  Yongsheng Wu,et al.  Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study , 2020, The Lancet Infectious Diseases.

[6]  K. Kupferschmidt WHO launches global megatrial of the four most promising coronavirus treatments , 2020 .

[7]  Zhìhóng Hú,et al.  Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro , 2020, Cell Discovery.

[8]  Zhìhóng Hú,et al.  Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro , 2020, Cell Discovery.

[9]  Xu Liu,et al.  In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[10]  Jianjun Gao,et al.  Discovering drugs to treat coronavirus disease 2019 (COVID-19). , 2020, Drug discoveries & therapeutics.

[11]  P. Klepac,et al.  Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts , 2020, The Lancet Global Health.

[12]  Gengfu Xiao,et al.  Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro , 2020, Cell Research.

[13]  Jing Zhao,et al.  Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia , 2020, The New England journal of medicine.

[14]  L. Yang,et al.  Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak , 2020, bioRxiv.

[15]  John-Arne Røttingen,et al.  Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!) , 2017, The Lancet.

[16]  H. Nishiura,et al.  Preliminary estimation of the basic reproduction number of Zika virus infection during Colombia epidemic, 2015-2016. , 2016, Travel medicine and infectious disease.

[17]  A Donner,et al.  Developments in cluster randomized trials and Statistics in Medicine , 2007, Statistics in medicine.

[18]  D. Ashby,et al.  Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. , 2006, International journal of epidemiology.

[19]  N. Seidah,et al.  Chloroquine is a potent inhibitor of SARS coronavirus infection and spread , 2005, Virology Journal.

[20]  John O'Quigley,et al.  Proportional hazards models with frailties and random effects , 2002, Statistics in medicine.

[21]  S Wacholder,et al.  Binomial regression in GLIM: estimating risk ratios and risk differences. , 1986, American journal of epidemiology.