Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium

We demonstrate catalyst-free growth of GaAs nanowires by selective-area metal-organic chemical vapor deposition (MOCVD) on GaAs and silicon substrates using a triethylgallium (TEGa) precursor. Two-temperature growth of GaAs nanowires-nucleation at low temperature followed by nanowire elongation at high temperature-almost completely suppresses the radial overgrowth of nanowires on GaAs substrates while exhibiting a vertical growth yield of almost 100%. A 100% growth yield is also achieved on silicon substrates by terminating Si(111) surfaces by arsenic prior to the nanowire growth and optimizing the growth temperature. Compared with trimethylgallium (TMGa) which has been exclusively employed in the vapor-solid phase growth of GaAs nanowires by MOCVD, the proposed growth technique using TEGa is advantageous because of lower growth temperature and fully suppressed radial overgrowth. It is also known that GaAs grown by TEGa induce less impurity incorporation compared with TMGa, and therefore the proposed method could be a building block for GaAs nanowire-based high-performance optoelectronic and nanoelectronic devices on both III-V and silicon platforms.

[1]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[2]  Control of GaAs nanowire morphology by group III precursor chemistry , 2011 .

[3]  E. Kaxiras,et al.  Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures , 2010, 1011.5165.

[4]  M. Kaniber,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .

[5]  C. Chang-Hasnain,et al.  GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. , 2011, Nano letters.

[6]  Baolai Liang,et al.  Surface plasmon-enhanced nanopillar photodetectors. , 2011, Nano letters.

[7]  Diana L. Huffaker,et al.  InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy , 2010 .

[8]  W. S. Hobson,et al.  High quality AlxGa1−xAs grown by organometallic vapor phase epitaxy using trimethylamine alane as the aluminum precursor , 1991 .

[9]  Takashi Fukui,et al.  Control of InAs nanowire growth directions on Si. , 2008, Nano letters.

[10]  P. Senanayake,et al.  Composite axial/core-shell nanopillar light-emitting diodes at 1.3 μm , 2012 .

[11]  Takashi Fukui,et al.  Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.

[12]  T. Fukui,et al.  Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy , 2008 .

[13]  K. Tomioka,et al.  Influence of growth temperature on growth of InGaAs nanowires in selective-area metal–organic vapor-phase epitaxy , 2012 .

[14]  Baolai Liang,et al.  Bottom-up photonic crystal lasers. , 2011, Nano letters.

[15]  H. Riel,et al.  InAs nanowire growth on oxide-masked 〈111〉 silicon , 2012 .

[16]  Kenji Hiruma,et al.  Growth characteristics of GaAs nanowires obtained by selective area metal–organic vapour-phase epitaxy , 2008, Nanotechnology.

[17]  Alan C. Farrell,et al.  Diode Characteristics Approaching Bulk Limits in GaAs Nanowire Array Photodetectors. , 2017, Nano letters.

[18]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[19]  Akshay Balgarkashi,et al.  Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator. , 2017, Nano letters.

[20]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.

[21]  S. Pearton,et al.  Comparison of gallium and arsenic precursors for GaAs carbon doping by organometallic vapor phase epitaxy using CCl4 , 1992 .

[22]  Lars Samuelson,et al.  Role of surface diffusion in chemical beam epitaxy of InAs nanowires , 2004 .

[23]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[24]  L. Lauhon,et al.  Three-dimensional nanoscale composition mapping of semiconductor nanowires. , 2006, Nano letters.

[25]  Li-Wei Chou,et al.  Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability. , 2015, Journal of the American Chemical Society.

[26]  Yasuhiko Arakawa,et al.  Room-temperature lasing in a single nanowire with quantum dots , 2015 .

[27]  Takashi Fukui,et al.  Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates , 2004 .

[28]  C. Chang-Hasnain,et al.  Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. , 2009, Optics express.

[29]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[30]  C. Caneau,et al.  Selective organometallic vapor phase epitaxy of Ga and In compounds : a comparison of TMIn and TEGa versus TMIn and TMGa , 1993 .

[31]  Takashi Fukui,et al.  Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy , 2005 .

[32]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[33]  Hyunseok Kim,et al.  Monolithic InGaAs Nanowire Array Lasers on Silicon-on-Insulator Operating at Room Temperature. , 2017, Nano letters.