Trajectory generation for the N-trailer problem using Goursat normal form

Shows how the machinery of exterior differential systems can be used to help solve nonholonomic motion planning problems. Since the Goursat normal form, for exterior differential systems is dual to chained form for vector fields, the authors solve the problem of steering a mobile robot with N trailers by converting the system into chained form, doing the path-planning in the chained form coordinates, and converting the path back into the original coordinates. Simulations of the N-trailer system parallel parking and backing into a loading dock are included.<<ETX>>

[1]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[2]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[3]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[4]  Jean-Paul Laumond,et al.  Feasible Trajectories for Mobile Robots with Kinematic and Environment Constraints , 1986, IAS.

[5]  R. Weber,et al.  Hamiltonian systems with constraints and their meaning in mechanics , 1986 .

[6]  J. C. Alexander,et al.  MANEUVERING OF VEHICLES , 1987 .

[7]  J. Latombe,et al.  On nonholonomic mobile robots and optimal maneuvering , 1989, Proceedings. IEEE International Symposium on Intelligent Control 1989.

[8]  Georges Giralt,et al.  An Integrated Navigation and Motion Control System for Autonomous Multisensory Mobile Robots , 1990, Autonomous Robot Vehicles.

[9]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[10]  S. Shankar Sastry,et al.  Grasping and manipulation using multi ngered robot hands , 1990 .

[11]  J. Laumond Nonholonomic motion planning versus controllability via the multibody car system example , 1990 .

[12]  Jean-Paul Laumond,et al.  Controllability of a multibody mobile robot , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[13]  Gerardo Lafferriere,et al.  Motion planning for controllable systems without drift , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[14]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[15]  M. Fliess,et al.  On Differentially Flat Nonlinear Systems , 1992 .

[16]  John F. Canny,et al.  Using skeletons for nonholonomic path planning among obstacles , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[17]  A. Divelbiss,et al.  A global approach to nonholonomic motion planning , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[18]  S. Shankar Sastry,et al.  Steering car-like systems with trailers using sinusoids , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[19]  Philippe Martin,et al.  Flatness and motion planning : the car with n trailers. , 1992 .

[20]  G. Jacob MOTION PLANNING BY PIECEWISE CONSTANT OR POLYNOMIAL INPUTS , 1992 .

[21]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[22]  R. Gardner,et al.  The GS algorithm for exact linearization to Brunovsky normal form , 1992 .

[23]  D. Normand-Cyrot,et al.  An introduction to motion planning under multirate digital control , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[24]  S. Sastry,et al.  Extended Goursat normal forms with applications to nonholonomic motion planning , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[25]  Ole Jakob Sørdalen,et al.  Conversion of the kinematics of a car with n trailers into a chained form , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[26]  Zexiang Li,et al.  Smooth Time-Periodic Feedback Solutions for Nonholonomic Motion Planning , 1993 .

[27]  Linda Bushnell,et al.  Steering Three-Input Chained Form Nonholonomic Systems Using Sinusoids: The Fire Truck Example , 1993 .

[28]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[29]  Zexiang Li,et al.  Optimal Nonholonomic Motion Planning for a Falling Cat , 1993 .

[30]  R. Murray,et al.  Exponential stabilization of driftless nonlinear control systems via time-varying, homogeneous feedback , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[31]  S. Sastry,et al.  Stabilization of trajectories for systems with nonholonomic constraints , 1994 .

[32]  Richard M. Murray,et al.  Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..

[33]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[34]  R. Murray,et al.  Trajectory generation for the N-trailer problem using Goursat normal form , 1995 .

[35]  S. Sastry,et al.  The multi‐steering N‐trailer system: A case study of goursat normal forms and prolongations , 1995 .