Scaling law for the compositional dependence of Raman frequencies in SnGe and GeSi alloys

The compositional dependence of the Ge–Ge Raman mode in SnGe alloys has been measured in samples grown on Si substrates using a chemical vapor deposition technique. The experimental result, Δω(s)=(−68±5)s (where s is the Sn concentration), is in very good agreement with a theoretical prediction from a simple model with parameters adjusted to the compositional dependence of Raman frequencies in GeSi alloys.

[1]  Methfessel,et al.  Anharmonic Keating model for group-IV semiconductors with application to the lattice dynamics in alloys of Si, Ge, and C. , 1995, Physical review. B, Condensed matter.

[2]  F. H. Dacol,et al.  Measurements of alloy composition and strain in thin GexSi1−x layers , 1994 .

[3]  Spencer,et al.  Carbon dependence of Raman mode frequencies in Si1-x-yGexCy alloys. , 1996, Physical review. B, Condensed matter.

[4]  A. Pinczuk,et al.  Raman study of order and disorder in SiGe ultrathin superlattices , 1988 .

[5]  Kuon Inoue,et al.  Lattice Vibrational Properties of Crystalline Si-Ge Alloys , 1984 .

[6]  Stefan Zollner,et al.  Ge–Sn semiconductors for band-gap and lattice engineering , 2002 .

[7]  Stefano de Gironcoli,et al.  Structure and thermodynamics of SixGe1-x alloys from ab initio Monte Carlo simulations. , 1991, Physical review letters.

[8]  A. S. Barker,et al.  Optical studies of the vibrational properties of disordered systems , 1975 .

[9]  Corey L. Bungay,et al.  Tunable band structure in diamond–cubic tin–germanium alloys grown on silicon substrates , 2003 .

[10]  W. Weber,et al.  Adiabatic bond charge model for the phonons in diamond, Si, Ge, and α-Sn , 1977 .

[11]  Thorpe,et al.  Length mismatch in random semiconductor alloys. III. Crystalline and amorphous SiGe. , 1992, Physical review. B, Condensed matter.

[12]  Nemanich,et al.  Bond-length relaxation in Si1-xGex alloys. , 1994, Physical review. B, Condensed matter.

[13]  Michel Gendry,et al.  OPTICAL-PHONON BEHAVIOR IN GA1-XINXAS : THE ROLE OF MICROSCOPIC STRAINS AND IONIC PLASMON COUPLING , 1998 .

[14]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[15]  Hugo R. Navarro-Contreras,et al.  Raman scattering from fully strained Ge1−xSnx(x⩽0.22) alloys grown on Ge(001)2×1 by low-temperature molecular beam epitaxy , 1998 .

[16]  R. Merlin,et al.  Raman scattering in materials science , 2000 .

[17]  Cai,et al.  Length mismatch in random semiconductor alloys. I. General theory for quaternaries. , 1992, Physical review. B, Condensed matter.

[18]  J. Menéndez,et al.  Phonons in epitaxially grown α‐Sn1−xGex alloys , 1990 .

[19]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .

[20]  R. Carles,et al.  Bond relaxation phenomenon and impurity modes frequencies in III V compounds , 1985 .

[21]  H. Radamson,et al.  Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1 , 1998 .

[22]  David J. Lockwood,et al.  Strain in coherent-wave SiGe/Si superlattices , 2000 .

[23]  H. Atwater,et al.  Synthesis of epitaxial SnxGe1−x alloy films by ion‐assisted molecular beam epitaxy , 1995 .

[24]  K. Navrátil,et al.  Vibrational modes in germanium-rich Si¢Ge1−¢ alloys , 1990 .

[25]  Resta,et al.  Microscopic atomic structure and stability of Si-Ge solid solutions. , 1988, Physical review. B, Condensed matter.