Recovering entanglement by local operations

We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of “hidden” entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.

[1]  S. Phoenix Elements of Quantum Optics , 1991 .

[2]  David P. DiVincenzo,et al.  Entanglement of Assistance , 1998, QCQC.

[3]  A. Buchleitner,et al.  Optimal dynamical characterization of entanglement. , 2007, Physical review letters.

[4]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[5]  O. Cohen,et al.  Unlocking Hidden Entanglement with Classical Information , 1998 .

[6]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[7]  G. Falci,et al.  Superconducting qubit manipulated by fast pulses: experimental observation of distinct decoherence regimes , 2011, 1110.1508.

[8]  Entanglement within the quantum trajectory description of open quantum systems. , 2004, Physical review letters.

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  J. C. Retamal,et al.  Dynamics of entanglement transfer through multipartite dissipative systems , 2010, 1007.1951.

[11]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[12]  G. Falci,et al.  Hidden entanglement, system-environment information flow and non-Markovianity , 2014, 1402.1948.

[13]  Giuseppe Compagno,et al.  Entanglement dynamics in superconducting qubits affected by local bistable impurities , 2012, 1408.6887.

[14]  A. Doherty,et al.  Dynamical decoupling sequence construction as a filter-design problem , 2010, 1012.4262.

[15]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[16]  J. C. Retamal,et al.  Sudden birth versus sudden death of entanglement in multipartite systems. , 2008, Physical review letters.

[17]  Ming-Yong Ye,et al.  Entanglement monogamy and entanglement evolution in multipartite systems , 2009 .

[18]  Papadopoulos,et al.  Classical information and distillable entanglement , 1999, Physical review letters.

[19]  Jiangbin Gong,et al.  Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences , 2010 .

[20]  Jiangbin Gong,et al.  Universal dynamical decoupling: Two-qubit states and beyond , 2010 .

[21]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[22]  Mauro Paternostro,et al.  Dynamical role of system-environment correlations in non-Markovian dynamics , 2012 .

[23]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[24]  F. Buscemi,et al.  Inverting quantum decoherence by classical feedback from the environment. , 2005, Physical review letters.

[25]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[26]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[27]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  D. Spehner,et al.  Average entanglement for Markovian quantum trajectories , 2010, 1006.1317.

[29]  G. Falci,et al.  Initial decoherence in solid state qubits. , 2005, Physical review letters.

[30]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[31]  V. Vedral,et al.  Physically realizable entanglement by local continuous measurements , 2010, 1006.1233.

[32]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[33]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[34]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[35]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[37]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[38]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[39]  H. Carmichael An open systems approach to quantum optics , 1993 .

[40]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[41]  Generating and revealing a quantum superposition of electromagnetic-field binomial states in a cavity , 2007, quant-ph/0703144.

[42]  E. Andersson,et al.  Dynamics of correlations due to a phase-noisy laser , 2011, 1111.0917.

[43]  R. F. Werner,et al.  Quantum lost and found , 2002, quant-ph/0209025.

[44]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[45]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[46]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  J I Cirac,et al.  Entanglement versus correlations in spin systems. , 2004, Physical review letters.

[50]  P. Joyez,et al.  Decoherence in a superconducting quantum bit circuit , 2005 .