On the Interpolation Error Estimates for Q1 Quadrilateral Finite Elements

In this paper, we study the relation between the error estimate of the bilinear interpolation on a general quadrilateral and the geometric characters of the quadrilateral. Some explicit bounds of the interpolation error are obtained based on some sharp estimates of the integral over $\frac{1}{|J|^{p-1}}$ for $1\leq p\leq\infty$ on the reference element, where $J$ is the Jacobian of the nonaffine mapping. This allows us to introduce weak geometric conditions (depending on $p$) leading to interpolation error estimates in the $W^{1,p}$ norm, for any $p\in [1,\infty)$, which can be regarded as a generalization of the regular decomposition property (RDP) condition introduced in [G. Acosta and R. G. Duran, SIAM J. Numer. Anal., 38 (2000), pp. 1073-1088] for $p=2$ and new RDP conditions (NRDP) for $p\neq2$. We avoid the use of the reference family elements, which allows us to extend the results to a larger class of elements and to introduce the NRDP condition in a more unified way. As far as we know, the mesh condition presented in this paper is weaker than any other mesh conditions proposed in the literature for any $p$ with $1\leq p\leq\infty$.

[1]  Michèle Vanmaele,et al.  Applicability of the Bramble-Hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements , 1995 .

[2]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[3]  Michèle Vanmaele,et al.  The interpolation theorem for narrow quadrilateral isoparametric finite elements , 1995 .

[4]  Ricardo G. Durán Error estimates for anisotropic finite elements and applications , 2006 .

[5]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[6]  Serge Nicaise,et al.  Crouzeix-Raviart type finite elements on anisotropic meshes , 2001, Numerische Mathematik.

[7]  Zhimin Zhang POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .

[8]  Shipeng Mao,et al.  Nonconforming rotated Q1 element on non-tensor product anisotropic meshes , 2006 .

[9]  Shipeng Mao,et al.  A quadrilateral, anisotropic, superconvergent, nonconforming double set parameter element , 2006 .

[10]  Gabriel Acosta,et al.  Error Estimates for Cq1 Isoparametric Elements Satisfying a Weak Angle Condition , 2000, SIAM J. Numer. Anal..

[11]  Weiming Cao,et al.  On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..

[12]  Ricardo G. Durán,et al.  Error estimates on anisotropic ℚ1 elements for functions in weighted Sobolev spaces , 2005, Math. Comput..

[13]  Zhong-Ci Shi,et al.  Quadrilateral mesh revisited , 2002 .

[14]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[15]  Shipeng Mao,et al.  Accuracy analysis of Adini's non‐conforming plate element on anisotropic meshes , 2005 .

[16]  R. Verfürth,et al.  Error estimates for some quasi-interpolation operators , 1999 .

[17]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[18]  S. Nicaise,et al.  The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges , 1998 .

[19]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[20]  Jing Zhang,et al.  Interpolation error estimates of a modified 8-node serendipity finite element , 2000, Numerische Mathematik.

[21]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[22]  Pierre Jamet Estimation of the Interpolation Error for Quadrilateral Finite Elements Which Can Degenerate into Triangles , 1977 .

[23]  Thomas Apel,et al.  Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements , 1998, Computing.

[24]  Ricardo G. Durán,et al.  An optimal Poincare inequality in L^1 for convex domains , 2003 .

[25]  Gabriel Acosta,et al.  Interpolation error estimates in W1,p for degenerate Q1 isoparametric elements , 2006, Numerische Mathematik.

[26]  Ricardo G. Durán,et al.  The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..

[27]  Dongyang Shi,et al.  Anisotropic interpolation and quasi‐Wilson element for narrow quadrilateral meshes , 2004 .

[28]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .