Automorphic forms and rational homology 3--spheres

We investigate a question of Cooper adjacent to the Virtual Haken Conjecture. Assuming certain conjectures in number theory, we show that there exist hyperbolic rational homology 3–spheres with arbitrarily large injectivity radius. These examples come from a tower of abelian covers of an explicit arithmetic 3–manifold. The conjectures we must assume are the Generalized Riemann Hypothesis and a mild strengthening of results of Taylor et al on part of the Langlands Program for GL2 of an imaginary quadratic field. The proof of this theorem involves ruling out the existence of an irreducible two dimensional Galois representation rho of Gal(Qbar/Qsqrt-2) satisfying certain prescribed ramification conditions. In contrast to similar questions of this form, rho is allowed to have arbitrary ramification at some prime pi of Z[sqrt -2]. In the next paper in this volume, Boston and Ellenberg apply pro–p techniques to our examples and show that our result is true unconditionally. Here, we give additional examples where their techniques apply, including some non-arithmetic examples. Finally, we investigate the congruence covers of twist-knot orbifolds. Our experimental evidence suggests that these topologically similar orbifolds have rather different behavior depending on whether or not they are arithmetic. In particular, the congruence covers of the non-arithmetic orbifolds have a paucity of homology.

[1]  G. Harcos,et al.  l-Adic representations associated to modular forms over imaginary quadratic fields , 2007, 0707.1338.

[2]  G. Harcos,et al.  ℓ-adic Representations Associated to Modular Forms over Imaginary Quadratic Fields , 2007 .

[3]  N. Boston,et al.  Pro–$p$ groups and towers of rational homology spheres , 2006, 0902.4567.

[4]  Richard Taylor,et al.  Compatibility of Local and Global Langlands Correspondences , 2004, math/0412357.

[5]  Jian-Shu Li,et al.  On the Eisenstein cohomology of arithmetic groups , 2004 .

[6]  Semistable abelian varieties over ℚ , 2004 .

[7]  Patrick D. Shanahan,et al.  Commensurability classes of twist knots , 2003, math/0311051.

[8]  Abelian varieties over cyclotomic fields with good reduction everywhere , 2003 .

[9]  C. Rajan On the non-vanishing of the first Betti number of hyperbolic three manifolds , 2003, math/0302226.

[10]  W. Thurston,et al.  The virtual Haken conjecture: Experiments and examples , 2002, math/0209214.

[11]  Г.Я. Перельман,et al.  Ricci flow with surgery on three-manifolds , 2003 .

[12]  A. Reid,et al.  The Arithmetic of Hyperbolic 3-Manifolds , 2002 .

[13]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[14]  M. Baker,et al.  Towers of Covers of Hyperbolic 3-Manifolds , 2001 .

[15]  K. Kramer,et al.  Non-existence of certain semistable abelian varieties , 2000, math/0011270.

[16]  Walter D. Neumann,et al.  Computing Arithmetic Invariants of 3-Manifolds , 2000, Exp. Math..

[17]  J. Dixon,et al.  Analytic Pro-P Groups , 1999 .

[18]  Frank Quinn,et al.  Problems in low-dimensional topology , 1997 .

[19]  George Havas,et al.  Application of computers to questions like those of Burnside , 1996 .

[20]  EIGENVALUES OF THE LAPLACIAN, THE FIRST BETTI NUMBER AND THE CONGRUENCE SUBGROUP PROBLEM , 1996 .

[21]  A. Lubotzky Free quotients and the first betti number of some hyperbolic manifolds , 1996 .

[22]  Alexander Shen,et al.  Algorithms and Programming , 1996 .

[23]  Eamonn A. O'Brien,et al.  Application of Computers to Questions like those of Burnside, II , 1996, Int. J. Algebra Comput..

[24]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[25]  A. Wiles Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .

[26]  H. Hilden,et al.  On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant , 1995 .

[27]  Edited Rob Kirby,et al.  Problems in Low-Dimensional Topology , 1995 .

[28]  D. Ramakrishnan Appendix: A refinement of the strong multiplicity one theorem for GL(2) , 1994 .

[29]  J. Tate The non-existence of certain Galois extensions of Q unramified outside 2 , 1994 .

[30]  Richard Taylor l-adic representations associated to modular forms over imaginary quadratic fields. II , 1994 .

[31]  Richard Taylor,et al.  l-adic representations associated to modular forms over imaginary quadratic fields , 1993 .

[32]  L. Clozel On the cohomology of Kottwitz’s arithmetic varieties , 1993 .

[33]  T. Rassias EIGENVALUES OF THE LAPLACIAN , 1991 .

[34]  J. Rogawski Automorphic representations of unitary groups in three variables , 1990 .

[35]  Richard Taylor On galois representations associated to Hilbert modular forms , 1989 .

[36]  L. Clozel On the cuspidal cohomology of arithmetic subgroups of $\mathrm{SL}(2n)$ and the first Betti number of arithmetic $3$-manifolds , 1987 .

[37]  G. Harder Eisenstein cohomology of arithmetic groups. The case GL2 , 1987 .

[38]  F. Diaz y Diaz,et al.  Petits discriminants des corps de nombres totalement imaginaires de degré 8 , 1987 .

[39]  J. Schwermer,et al.  On liftings and cusp cohomology of arithmetic groups , 1986 .

[40]  Henri Carayol,et al.  Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert , 1986 .

[41]  J. Fontaine Il n'y a pas de variété abélienne sur Z , 1985 .

[42]  J. Cremona Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields , 1984 .

[43]  A. Lubotzky Group presentation, $p$-adic analytic groups and lattices in $\mathrm{SL}_2(\mathbf{C})$ , 1983 .

[44]  M. Rapoport,et al.  Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik , 1982 .

[45]  Eduardus M. de Jager,et al.  Geometric Techniques in Gauge Theories , 1982 .

[46]  F. Grunewald,et al.  SL2 over complex quadratic number fields. I , 1978 .

[47]  H. P. F. Swinnerton-Dyer,et al.  On ℓ-adic representations and congruences for coefficients of modular forms (II) , 1977 .

[48]  J. Millson On the first Betti number of a constant negatively curved manifold , 1976 .

[49]  M. Raghunathan Discrete subgroups of Lie groups , 1972 .

[50]  R. Langlands,et al.  Automorphic Forms on GL(2) , 1970 .

[51]  Friedhelm Waldhausen,et al.  The word problem in fundamental groups of sufficiently large irreducible 3-manifolds , 1968 .

[52]  W. J. Barnes Group at presentation , .