Helicases and RNA unwinding in translation

[1]  N. Sonenberg,et al.  The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis , 1993, Molecular and cellular biology.

[2]  B. Wittmer,et al.  A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. , 1993, The EMBO journal.

[3]  P. Linder,et al.  A new yeast translation initiation factor suppresses a mutation in the eIF‐4A RNA helicase. , 1993, The EMBO journal.

[4]  F. Fuller-Pace,et al.  DbpA: a DEAD box protein specifically activated by 23s rRNA. , 1993, The EMBO journal.

[5]  P. Zamore,et al.  RNA annealing activity is intrinsically associated with U2AF. , 1993, The Journal of biological chemistry.

[6]  P. Chambon,et al.  DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. , 1993, Science.

[7]  S. Buratowski DNA repair and transcription: the helicase connection. , 1993, Science.

[8]  N. Sonenberg,et al.  The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. , 1993, The Journal of biological chemistry.

[9]  T. Donahue,et al.  SSL1, a suppressor of a HIS4 5'-UTR stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast. , 1992, Genes & development.

[10]  J. Woolford,et al.  A putative ATP-dependent RNA helicase involved in Saccharomyces cerevisiae ribosome assembly. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Shuman,et al.  Vaccinia virus RNA helicase: an essential enzyme related to the DE-H family of RNA-dependent NTPases. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[12]  N. Sonenberg,et al.  mRNAs containing extensive secondary structure in their 5′ non‐coding region translate efficiently in cells overexpressing initiation factor eIF‐4E. , 1992, The EMBO journal.

[13]  P Linder,et al.  ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Sonenberg,et al.  Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF‐4A. , 1992, The EMBO journal.

[15]  K. D. Gulyas,et al.  SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3 , 1992, Cell.

[16]  W. Merrick Mechanism and regulation of eukaryotic protein synthesis. , 1992, Microbiological reviews.

[17]  J. Smith,et al.  The purified yeast pre‐mRNA splicing factor PRP2 is an RNA‐dependent NTPase. , 1992, The EMBO journal.

[18]  P Linder,et al.  D‐E‐A‐D protein family of putative RNA helicases , 1992, Molecular microbiology.

[19]  R. Thach Cap recap: The involvement of eIF-4F in regulating gene expression , 1992, Cell.

[20]  N. Sonenberg,et al.  RNA unwinding in translation: assembly of helicase complex intermediates comprising eukaryotic initiation factors eIF-4F and eIF-4B , 1991, Molecular and cellular biology.

[21]  E. Koonin Similarities in RNA helicases , 1991, Nature.

[22]  S. R. Schmid,et al.  Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases , 1991, Molecular and cellular biology.

[23]  K. Rudd,et al.  deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2 , 1991, Journal of bacteriology.

[24]  C. Guthrie,et al.  PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome , 1991, Nature.

[25]  J. Steitz,et al.  Alive with DEAD proteins , 1991, Nature.

[26]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[27]  J. Hershey,et al.  Cloning and expression of eukaryotic initiation factor 4B cDNA: sequence determination identifies a common RNA recognition motif. , 1990, The EMBO journal.

[28]  N. Sonenberg,et al.  Translation initiation factor-dependent extracts from Saccharomyces cerevisiae. , 1990, Biochimica et biophysica acta.

[29]  A. V. D. Eb,et al.  A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome , 1990, Cell.

[30]  W. Kabsch,et al.  Refined crystal structure of the triphosphate conformation of H‐ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. , 1990, The EMBO journal.

[31]  R. W. Davis,et al.  Translation initiation and ribosomal biogenesis: involvement of a putative rRNA helicase and RPL46. , 1990, Science.

[32]  N. Sonenberg,et al.  Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F , 1990, Molecular and cellular biology.

[33]  H. Trachsel,et al.  The 5'-leader sequence of tobacco mosaic virus RNA mediates initiation-factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. , 1990, Gene.

[34]  J. Riechmann,et al.  RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. , 1990, Nucleic acids research.

[35]  P Linder,et al.  Translation in Saccharomyces cerevisiae: initiation factor 4A-dependent cell-free system. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[36]  V. Blinov,et al.  Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. , 1989, Nucleic acids research.

[37]  M. Scheffner,et al.  RNA helicase activity associated with the human p68 protein , 1989, Nature.

[38]  P. Slonimski,et al.  Birth of the D-E-A-D box , 1989, Nature.

[39]  J. Hershey,et al.  An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly , 1988, Nature.

[40]  H. Trachsel,et al.  The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. , 1988, The EMBO journal.

[41]  N. Sonenberg Cap-binding proteins of eukaryotic messenger RNA: functions in initiation and control of translation. , 1988, Progress in nucleic acid research and molecular biology.

[42]  N. Sonenberg,et al.  Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukaryotic mRNA reduces translational efficiency , 1985, Cell.