DYNAMICAL APPROACH STUDY OF SPURIOUS STEADY-STATE NUMERICAL SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS II. GLOBAL ASYMPTOTIC BEHAVIOR OF TIME DISCRETIZATIONS ∗

SUMMARY The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 × 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how “numerical” basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DCs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, ...

[1]  H. C. Yee,et al.  Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics☆ , 1991 .

[2]  H. C. Yee,et al.  GLOBAL ASYMPTOTIC BEHAVIOR OF ITERATIVE IMPLICIT SCHEMES , 1994 .

[3]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[4]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[5]  William F. Langford,et al.  Interactions of Hopf and Pitchfork Bifurcations , 1980 .

[6]  E. Adams Periodic Solutions: Enclosure, Verification, and Applications , 1990, Computer Arithmetic and Self-Validating Numerical Methods.

[7]  C. S. Hsu,et al.  Cell-to-Cell Mapping , 1987 .

[8]  H. C. Yee,et al.  Numerical study of unsteady viscous hypersonic blunt body flows with an impinging shock , 1989 .

[9]  D. G. Schaeffer,et al.  Solution of the riemann problem for a prototype 2×2 system of non-strictly hyperbolic conservation laws , 1987 .

[10]  H. C. Yee,et al.  On spurious asymptotic numerical solutions of explicit Runge-Kutta methods , 1992 .

[11]  Antony Jameson,et al.  Airfoils admitting non-unique solutions of the Euler equations , 1991 .

[12]  R. F. Warming,et al.  Implicit numerical methods for the compressible Navier-Stokes and Euler equations , 1982 .

[13]  U. Dallmann Three-dimensional vortex structures and vorticity topology , 1988 .

[14]  H. C. Yee,et al.  Viscous hypersonic shock-on-shock interaction on blunt cowl lips , 1988 .

[15]  R. S. Guttalu,et al.  A Method of Analyzing Generalized Cell Mappings , 1982 .

[16]  R. Temam Do inertial manifolds apply to turbulence , 1989 .

[17]  R. Temam,et al.  Variétés inertielles des équations différentielles dissipatives , 1985 .

[18]  B. Nicolaenko,et al.  Spectral barriers and inertial manifolds for dissipative partial differential equations , 1989 .

[19]  H. C. Yee,et al.  A class of high resolution explicit and implicit shock-capturing methods , 1989 .

[20]  Roger Temam,et al.  Inertial manifolds and multigrid methods , 1990 .

[21]  H. C. Yee,et al.  On spurious steady-state solutions of explicit Runge-Kutta schemes , 1990 .

[22]  A. Iserles Nonlinear Stability and Asymptotics of O.D.E. Solvers , 1988 .

[23]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[24]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[25]  S. A. Robertson,et al.  NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .

[26]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[27]  C. Hung,et al.  Computation of saddle point of attachment , 1991 .

[28]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[29]  Arieh Iserles,et al.  A unified approach to spurious solutions introduced by time discretization. Part I: basic theory , 1991 .

[30]  A. Iserles Stability and Dynamics of Numerical Methods for Nonlinear Ordinary Differential Equations , 1990 .

[31]  H. C. Yee,et al.  High-Resolution Shock-Capturing Schemes for Inviscid and Viscous Hypersonic Flows , 1990 .

[32]  Jian-Xue Xu,et al.  Domains of attraction for multiple limit cycles of coupled van der pol equations by simple cell mapping , 1985 .

[33]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[34]  Minkyu Kwak Finite dimensional inertial forms for the 2D Navier-Stokes equations , 1991 .

[35]  C. Hsu,et al.  An Unravelling Algorithm for Global Analysis of Dynamical Systems: An Application of Cell-to-Cell Mappings , 1980 .

[36]  O. Perron,et al.  Über Stabilität und asymptotisches Verhalten der Lösungen eines Systems endlicher Differenzengleichungen. , 1929 .

[37]  B. Werner Turning Points of Branches of Positive Solutions , 1980 .

[38]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[39]  U. Dallmann,et al.  On topological changes of separating flow structures at transition Reynolds numbers , 1987 .

[40]  R. F. Warming,et al.  An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. [application to Eulerian gasdynamic equations , 1976 .

[41]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[42]  H. C. Yee,et al.  Numerical wave propagation in an advection equation with a nonlinear source term , 1992 .

[43]  J. M. Sanz-Serna,et al.  Equilibria of Runge-Kutta methods , 1990 .

[44]  Stephen Schecter,et al.  Undercompressive shocks for nonstrictly hyperbolic conservation laws , 1991 .

[45]  Lambertus Hesselink,et al.  Surface representations of two- and three-dimensional fluid flow topology , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[46]  R. Temam,et al.  Attractors for the Navier-Stokes equations: Iocalization and approximation , 1989 .

[47]  A. R. Humphries Spurious solutions of numerical methods for initial value problems , 1993 .

[48]  H. Flashner,et al.  A computational approach for studying domains of attraction for non-linear systems , 1988 .

[49]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[50]  E. A. Spiegel,et al.  Amplitude Equations for Systems with Competing Instabilities , 1983 .

[51]  H. C. Yee,et al.  On the numerical treatment of nonlinear source terms in reaction-convection equations , 1992 .

[52]  H. C. Yee,et al.  On Reliability of the Time-Dependent Approach to Obtaining Steady-State Numerical Solutions , 1992 .