Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns.

We experimentally demonstrate photocurrent enhancement in ultrathin Cu(In,Ga)Se2 (CIGSe) solar cells with absorber layers of 460 nm by nanoscale dielectric light scattering patterns printed by substrate conformal imprint lithography. We show that patterning the front side of the device with TiO2 nanoparticle arrays results in a small photocurrent enhancement in almost the entire 400-1200 nm spectral range due to enhanced light coupling into the cell. Three-dimensional finite-difference time-domain simulations are in good agreement with external quantum efficiency measurements. Patterning the Mo/CIGSe back interface using SiO2 nanoparticles leads to strongly enhanced light trapping, increasing the efficiency from 11.1% for a flat to 12.3% for a patterned cell. Simulations show that optimizing the array geometry could further improve light trapping. Including nanoparticles at the Mo/CIGSe interface leads to substantially reduced parasitic absorption in the Mo back contact. Parasitic absorption in the back contact can be further reduced by fabricating CIGSe cells on top of a SiO2-patterned In2O3:Sn (ITO) back contact. Simulations show that these semitransparent cells have similar spectrally averaged reflection and absorption in the CIGSe active layer as a Mo-based patterned cell, demonstrating that the absorption losses in the Mo can be partially turned into transmission through the semitransparent geometry.

[1]  Martin A. Green,et al.  Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons , 2010 .

[2]  Su-Huai Wei,et al.  Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys , 1995 .

[3]  M. Schmid,et al.  The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films , 2013 .

[4]  C. Battaglia,et al.  Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells , 2011 .

[5]  J. Krč,et al.  Experimental verification of optically optimized CuGaSe2 top cell for improving chalcopyrite tandems , 2010 .

[6]  Jürgen H. Werner,et al.  Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells , 2003 .

[7]  A. Polman,et al.  Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination , 2013 .

[8]  M. Verschuuren,et al.  Substrate conformal imprint lithography for nanophotonics , 2010 .

[9]  A. Polman,et al.  Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells , 2012 .

[10]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[11]  C. Battaglia,et al.  Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting , 2010 .

[12]  P. Barber Absorption and scattering of light by small particles , 1984 .

[13]  M. Soldera,et al.  Geometric Light Trapping in 2D and 3D Structured Small Molecule Organic Solar Cells , 2013 .

[14]  F. Lederer,et al.  Comparison and optimization of randomly textured surfaces in thin-film solar cells. , 2010, Optics express.

[15]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[16]  A. Polman,et al.  Dielectric back scattering patterns for light trapping in thin-film Si solar cells. , 2013, Optics express.

[17]  Albert Polman,et al.  Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-si:h Solar Cells , 2022 .

[18]  D. Flandre,et al.  Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells , 2014, Progress in photovoltaics.

[19]  Rommel Noufi,et al.  HIGH-EFFICIENCY CUINXGA1-XSE2 SOLAR CELLS MADE FROM (INX,GA1-X)2SE3 PRECURSOR FILMS , 1994 .

[20]  Meir Orenstein,et al.  How front side plasmonic nanostructures enhance solar cell efficiency , 2011 .

[21]  J. Krč,et al.  Modeling plasmonic scattering combined with thin-film optics , 2011, Nanotechnology.

[22]  D. Hariskos,et al.  Substitution of the CdS buffer layer in CIGS thin‐film solar cells , 2014 .

[23]  Fengxian Xie,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012, Advanced materials.

[24]  Shanhui Fan,et al.  Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells , 2013, Nature Communications.

[25]  M. Patrini,et al.  Towards CIGS Solar Cells with Reduced Film Thickness: A Study of Optical Properties and of Photonic Structures for Light Trapping , 2012 .

[26]  Miro Zeman,et al.  Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells , 2008 .

[27]  J. Krč,et al.  Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)S2 solar cells , 2013 .

[28]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[29]  K. Catchpole,et al.  Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells , 2012 .

[30]  M. Zeman,et al.  Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. , 2012, Nano letters.

[31]  Isabelle Gerard,et al.  Broadband light-trapping in ultra-thin nano-structured solar cells , 2013, Photonics West - Optoelectronic Materials and Devices.

[32]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[33]  M. Schmid,et al.  Influence of substrate and its temperature on the optical constants of CuIn1−xGaxSe2 thin films , 2014 .

[34]  J. Krč,et al.  Optical modeling of chalcopyrite-based tandems considering realistic layer properties , 2009 .

[35]  L. Guo,et al.  Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. , 2009, ACS nano.

[36]  David Julien Louis Brémaud Investigation and development of CIGS solar cells on flexible substrates and with alternative electrical back contacts , 2009 .

[37]  G. Yin Preparation of ultra-thin CuIn 1-x Ga x Se 2 solar cells and their light absorption enhancement , 2015 .

[38]  C. Ballif,et al.  Plasmonic absorption in textured silver back reflectors of thin film solar cells , 2008 .

[39]  Fan-Ching Chien,et al.  Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. , 2011, ACS nano.

[40]  M. Schmid,et al.  Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature , 2015 .

[41]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[42]  Vikram L. Dalal,et al.  A photonic-plasmonic structure for enhancing light absorption in thin film solar cells , 2011 .

[43]  Martina Schmid,et al.  Plasmonic and photonic scattering and near fields of nanoparticles , 2014, Nanoscale Research Letters.

[44]  Albert Polman,et al.  Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells. , 2015, Nano letters.

[45]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[46]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[47]  Xing Wang Zhang,et al.  Plasmonic polymer tandem solar cell. , 2011, ACS nano.

[48]  J. Sites,et al.  Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells , 2005 .