New invariants of knotoids

In this paper we construct new invariants of knotoids including the odd writhe, the parity bracket polynomial, the affine index polynomial and the arrow polynomial, and give an introduction to the theory of virtual knotoids. The invariants in this paper are defined for classical knotoids in analogy to corresponding invariants of virtual knots. The affine index polynomial and the arrow polynomial provide bounds on the height (minimum crossing distance between endpoints) of a classical knotoid. We show that classical knotoids have symmetric affine index polynomials.

[1]  T. V. H. Prathamesh Knot Theory , 2016, Arch. Formal Proofs.

[2]  Victor A. Vassiliev,et al.  Cohomology of knot spaces , 1990 .

[3]  S. Chmutov,et al.  Introduction to Vassiliev Knot Invariants , 2011, 1103.5628.

[4]  V. Manturov Parity in knot theory , 2010 .

[5]  Colin Rourke,et al.  WHAT IS A WELDED LINK , 2007 .

[6]  P. B. Kronheimer,et al.  Khovanov homology is an unknot-detector , 2010, 1005.4346.

[7]  V. Manturov Khovanov Homology , 2022 .

[8]  M. Polyak Minimal generating sets of Reidemeister moves , 2009, 0908.3127.

[9]  L. Kauffman,et al.  Virtual Crossing Number and the Arrow Polynomial , 2008, 0810.3858.

[10]  S. Satoh VIRTUAL KNOT PRESENTATION OF RIBBON TORUS-KNOTS , 2000 .

[11]  Louis H. Kauffman,et al.  New invariants in the theory of knots , 1988 .

[12]  L. Kauffman,et al.  Parity, Skein Polynomials and Categorification , 2011, 1110.4911.

[13]  Akio Kawauchi,et al.  A Survey of Knot Theory , 1996 .

[14]  Finite Type Invariants of Classical and Virtual Knots , 1998, math/9810073.

[15]  Louis H. Kauffman Virtual Knot Theory , 1999, Eur. J. Comb..

[16]  L. Kauffman,et al.  Khovanov Homology, Lee Homology and a Rasmussen Invariant for Virtual Knots , 2014, 1409.5088.

[17]  Minimal surface representations of virtual knots and links , 2004, math/0401035.

[18]  Louis H. Kauffman,et al.  INTRODUCTION TO VIRTUAL KNOT THEORY , 2011, 1101.0665.

[19]  Vassily Olegovich Manturov,et al.  Long virtual knots and their invariants , 2004 .

[20]  Vassily Olegovich Manturov,et al.  Virtual Biquandles , 2004 .

[21]  L. Kauffman An Affine Index Polynomial Invariant of Virtual Knots , 2012, 1211.1601.

[22]  S. Kamada,et al.  ABSTRACT LINK DIAGRAMS AND VIRTUAL KNOTS , 2000 .

[23]  Aaron Kaestner On Applications of Parity in Virtual Knot Theory , 2011 .

[24]  Lifang Xia,et al.  Knots and Physics , 2012 .

[25]  Keith Alexander,et al.  Proteins analysed as virtual knots , 2016, Scientific Reports.

[26]  Y. Miyazawa A MULTI-VARIABLE POLYNOMIAL INVARIANT FOR VIRTUAL KNOTS AND LINKS , 2008 .

[27]  Nick D. Gilbert,et al.  Knots and surfaces , 1994 .

[28]  V. Manturov Khovanov homology for virtual knots with arbitrary coefficients , 2007 .

[29]  Zhiyun Cheng A TRANSCENDENTAL FUNCTION INVARIANT OF VIRTUAL KNOTS , 2015, 1511.08459.