Robust ordinal regression for multiple criteria group decision: UTA GMS -GROUP and
暂无分享,去创建一个
[1] C. Hwang,et al. Group Decision Making Under Multiple Criteria: Methods and Applications , 1986 .
[2] Yannis Siskos,et al. Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..
[3] Milosz Kadzinski,et al. Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..
[4] Matthias Ehrgott,et al. Multiple criteria decision analysis: state of the art surveys , 2005 .
[5] Keith W. Hipel,et al. Multiple Criteria Approaches to Group Decision and Negotiation , 2010, Trends in Multiple Criteria Decision Analysis.
[6] Evangelos Grigoroudis,et al. New Trends in Aggregation-Disaggregation Approaches , 2010 .
[7] Luis C. Dias,et al. Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..
[8] Salvatore Greco,et al. Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules , 2004, Eur. J. Oper. Res..
[9] José Rui Figueira,et al. Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..
[10] E. Grigoroudis,et al. Aggregation and Disaggregation of Preferences for Collective Decision-Making , 2005 .
[11] Salvatore Greco,et al. Multiple criteria sorting with a set of additive value functions , 2010, Eur. J. Oper. Res..
[12] Salvatore Greco,et al. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..
[13] Luis C. Dias,et al. Dealing with inconsistent judgments in multiple criteria sorting models , 2006, 4OR.
[14] Milosz Kadzinski,et al. Selection of a representative value function in robust multiple criteria sorting , 2011, Comput. Oper. Res..
[15] S. Greco,et al. Extreme ranking analysis in robust ordinal regression , 2012 .
[16] M. Shakun,et al. Mediator: Towards a Negotiation Support System , 1985 .
[17] Milosz Kadzinski,et al. ELECTREGKMS: Robust ordinal regression for outranking methods , 2011, Eur. J. Oper. Res..
[18] Salvatore Greco,et al. The Possible and the Necessary for Multiple Criteria Group Decision , 2009, ADT.
[19] Nikolaos F. Matsatsinis,et al. MCDA and preference disaggregation in group decision support systems , 2001, Eur. J. Oper. Res..
[20] Luis C. Dias,et al. Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS , 2007, Decis. Support Syst..
[21] Allan D. Shocker,et al. Estimating the weights for multiple attributes in a composite criterion using pairwise judgments , 1973 .
[22] J. Siskos. Assessing a set of additive utility functions for multicriteria decision-making , 1982 .
[23] Yin-Feng Xu,et al. Consensus models for AHP group decision making under row geometric mean prioritization method , 2010, Decis. Support Syst..
[24] Salvatore Greco,et al. Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..
[25] Salvatore Greco,et al. Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.
[26] V. Srinivasan,et al. Linear Programming Computational Procedures for Ordinal Regression , 1976, J. ACM.
[27] R. L. Keeney,et al. Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.
[28] Rudolf Vetschera,et al. Integrating databases and preference evaluations in group decision support : A feedback-oriented approach , 1991, Decis. Support Syst..