Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4

The intrinsic magnetic topological insulator MnBi2Te4 exhibits rich topological effects such as quantum anomalous Hall effect and axion electrodynamics. Here, by combining the use of synchrotron and laser light sources, we carry out comprehensive and high-resolution angle-resolved photoemission spectroscopy studies on MnBi2Te4 and clearly identify its topological electronic structure. In contrast to theoretical predictions and previous studies, we observe topological surface states with diminished gap forming a characteristic Dirac cone. We argue that the topological surface states are mediated by multidomains of different magnetization orientations. In addition, the temperature evolution of the energy bands clearly reveals their interplay with the magnetic phase transition by showing interesting differences between the bulk and surface states, respectively. The investigation of the detailed electronic structure of MnBi2Te4 and its temperature evolution provides important insight into not only the exotic properties of MnBi2Te4, but also the generic understanding of the interplay between magnetism and topological electronic structure in magnetic topological quantum materials.

[1]  Binghai Yan,et al.  Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. , 2010, Physical review letters.

[2]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[3]  Q. Zhang,et al.  Crystal growth and magnetic structure of MnBi2Te4 , 2019, Physical Review Materials.

[4]  Y. Tokura,et al.  A magnetic heterostructure of topological insulators as a candidate for an axion insulator. , 2017, Nature materials.

[5]  Qinghua Zhang,et al.  Experimental Realization of an Intrinsic Magnetic Topological Insulator , 2018, Chinese Physics Letters.

[6]  Yong Xu,et al.  Intrinsic magnetic topological insulator MnBi 2 Te 4 , 2020 .

[7]  Y. Tokura,et al.  Quantized chiral edge conduction on domain walls of a magnetic topological insulator , 2017, Science.

[8]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[9]  K. Koepernik,et al.  Strong ferromagnetism at the surface of an antiferromagnet caused by buried magnetic moments , 2013, Nature Communications.

[10]  Jing Wang,et al.  In-plane magnetic-field-induced quantum anomalous Hall plateau transition , 2019, Physical Review B.

[11]  Timur K. Kim,et al.  Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001) , 2019, Physical Review B.

[12]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[13]  Kang L. Wang,et al.  Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure , 2016, Science.

[14]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[15]  A. Arnau,et al.  Antiferromagnetic topological insulator MnBi 2 Te 4 , 2019 .

[16]  Haijun Zhang,et al.  Topological Axion States in the Magnetic Insulator MnBi_{2}Te_{4} with the Quantized Magnetoelectric Effect. , 2018, Physical review letters.

[17]  Yu Wang,et al.  Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4 , 2018, Physical Review Research.

[18]  M. Koshino,et al.  Topological delocalization of two-dimensional massless Dirac fermions. , 2007, Physical review letters.

[19]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[20]  Jing Wang Magnetic Dirac Semimetals in Three Dimensions , 2017, 1701.00896.

[21]  Don Heiman,et al.  High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. , 2014, Nature materials.

[22]  Baigeng Wang,et al.  Experimental observation of the gate-controlled reversal of the anomalous Hall effect in the intrinsic magnetic topological insulator MnBi2Te4 device. , 2019, Nano letters.

[23]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[24]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[25]  Bing-Lin Gu,et al.  Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials , 2018, Science Advances.

[26]  H. Weng,et al.  Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions , 2017, Nature Communications.

[27]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[28]  R. Wu,et al.  Axion Insulator State in a Ferromagnet/Topological Insulator/Antiferromagnet Heterostructure. , 2018, Nano letters.

[29]  Yong Xu,et al.  Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator , 2019, Nature Materials.

[30]  Claudia Felser,et al.  Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal , 2018, Nature physics.

[31]  Cheol-hee Park,et al.  Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4 , 2013 .

[32]  Zhe Sun,et al.  Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes , 2019, Nature Communications.

[33]  A. Arnau,et al.  Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi_{2}Te_{4} Films. , 2018, Physical review letters.

[34]  Joel E. Moore,et al.  Antiferromagnetic topological insulators , 2010, 1004.1403.

[35]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[36]  Nitin Samarth,et al.  Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures. , 2017, Physical review letters.

[37]  Gang Xu,et al.  Dirac fermions in an antiferromagnetic semimetal , 2016, Nature Physics.

[38]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[39]  C. Felser,et al.  Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal , 2017 .

[40]  Chin , 2021, COMARCA PERDIDA.

[41]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[44]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[45]  이현주 Q. , 2005 .

[46]  Yong Xu,et al.  Quantum Spin Hall and Quantum Anomalous Hall States Realized in Junction Quantum Wells , 2014, 1402.5167.

[47]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[48]  K. Nielsch,et al.  Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4 , 2018, Chemistry of Materials.

[49]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[50]  Chong Wang,et al.  Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.

[51]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[52]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[53]  Xianhui Chen,et al.  Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.

[54]  W. Wooster,et al.  Crystal structure of , 2005 .

[55]  V. N. Zverev,et al.  Prediction and observation of an antiferromagnetic topological insulator , 2018, Nature.

[56]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[57]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[58]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[59]  Yuan Wang,et al.  Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4 , 2019, Physical Review X.

[60]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..