Extreme Ultraviolet Radiation Measurement for Planetary Atmospheres/Magnetospheres from the Earth-Orbiting Spacecraft (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED)

The Sprint-A satellite with the EUV spectrometer (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED) was launched in September 2013 by the Epsilon rocket. Now it is orbiting around the Earth (954.05 km×1156.87 km orbit; the period is 104 minutes) and one has started a broad and varied observation program. With an effective area of more than 1 cm2 and well-calibrated sensitivity in space, the EUV spectrometer will produce spectral images (520–1480 Å) of the atmospheres/magnetospheres of several planets (Mercury, Venus, Mars, Jupiter, and Saturn) from the Earth’s orbit. At the first day of the observation, EUV emissions from the Io plasma torus (mainly sulfur ions) and aurora (H2 Lyman and Werner bands) of Jupiter have been identified. Continuous 3-month measurement for Io’s plasma torus and aurora is planned to witness the sporadic and sudden brightening events occurring on one or both regions. For Venus, the Fourth Positive (A1Π-X1Σ+) system of CO and some yet known emissions of the atmosphere were identified even though the exposure was short (8-min). Long-term exposure from April to June (for approximately 2 months) will visualize the Venusian ionosphere and tail in the EUV spectral range. Saturn and Mars are the next targets.

[1]  Fuminori Tsuchiya,et al.  The Exceed Mission , 2011 .

[2]  Takeshi Sakanoi,et al.  The extreme ultraviolet spectroscope for planetary science, EXCEED , 2013 .

[3]  F. Bagenal,et al.  A sensitivity study of the Enceladus torus , 2009, 0910.2243.

[4]  Henry L. Giclas,et al.  A list of white dwarf suspects III : special objects of small proper motion from the Lowell survey , 1965 .

[5]  Marco Turco,et al.  The forecaster's added value in QPF , 2009 .

[6]  Y. Katoh,et al.  Effect of photo‐dissociation on the spreading of OH and O clouds in Saturn's inner magnetosphere , 2012 .

[7]  I. Yoshikawa,et al.  Sounding‐rocket observation of O II 83.4‐nm emission over the polar ionosphere , 2002 .

[8]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[9]  J. Gérard,et al.  Cassini-UVIS observation of dayglow FUV emissions of carbon in the thermosphere of Venus , 2012 .

[10]  S. Krimigis,et al.  Sources and losses of energetic protons in Saturn's magnetosphere , 2008 .

[11]  Masayuki Kikuchi,et al.  Telescope of extreme ultraviolet (TEX) onboard SELENE: science from the Moon , 2008 .

[12]  B. Cecconi,et al.  An Earth-like correspondence between Saturn's auroral features and radio emission , 2005, Nature.

[13]  Andrew J. Steffl,et al.  Cassini UVIS observations of the Io plasma torus. II. Radial variations , 2004 .

[14]  Jane L. Fox,et al.  Solar activity variations of the Venus thermosphere/ionosphere , 2001 .

[15]  Edmond C. Roelof,et al.  Energetic ion acceleration in Saturn's magnetotail: Substorms at Saturn? , 2005 .

[16]  D. Delapp,et al.  Evidence for rotationally driven plasma transport in Saturn's magnetosphere , 2005 .

[17]  C. Hansen,et al.  Water vapour jets inside the plume of gas leaving Enceladus , 2008, Nature.

[18]  Fuminori Tsuchiya,et al.  Plan for Observing Magnetospheres of Outer Planets by Using the EUV Spectrograph Onboard the Sprint-A Mission , 2011 .

[19]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[20]  Ichiro Yoshikawa,et al.  Observation of He II emission from the plasmasphere by a newly developed EUV telescope on board sounding rocket S‐520‐19 , 1997 .

[21]  S. Hodgkin,et al.  Far-red optical colours of late-M and L dwarfs , 2002 .

[22]  M. Dougherty,et al.  Tethys and Dione as sources of outward-flowing plasma in Saturn’s magnetosphere , 2006, Nature.

[23]  A. Potter,et al.  Discovery of Sodium in the Atmosphere of Mercury , 1985, Science.

[24]  Thomas A. Bida,et al.  Discovery of calcium in Mercury's atmosphere , 2000, Nature.

[25]  E. Möbius,et al.  Charge states of energetic (≈0.5 MeV/n) ions in corotating interaction regions at 1 AU and implications on source populations , 2002 .

[26]  Atsushi Yamazaki,et al.  Feasibility study of the O II 83.4-mm imaging of the inosphere and magnetosphere , 2003 .

[27]  William E. McClintock,et al.  Mercury’s Complex Exosphere: Results from MESSENGER’s Third Flyby , 2010, Science.

[28]  H. Keller,et al.  Ultraviolet Imaging Spectroscopy Shows an Active Saturnian System , 2005, Science.

[29]  N. Krupp,et al.  A dynamic, rotating ring current around Saturn , 2007, Nature.

[30]  Normal incidence multilayer telescope for galactic EUV observation , 1996 .

[31]  Timothy A. Cassidy,et al.  Collisional spreading of Enceladus' neutral cloud , 2010 .

[32]  D. Shemansky,et al.  Detection of the hydroxyl radical in the Saturn magnetosphere , 1993, Nature.

[33]  P. Feldman,et al.  Narcissistic Ghosts in Rowland-Mounted, Concave Gratings with nu = 0 degrees : a Cautionary Note. , 1998, Applied optics.

[34]  Giampiero Naletto,et al.  PHEBUS: A double ultraviolet spectrometer to observe Mercury's exosphere , 2010 .

[35]  F. S. Turner,et al.  Energetic electrons injected into Saturn's neutral gas cloud , 2007 .

[36]  I. Yoshikawa,et al.  Helium observation in the Martian ionosphere by an X-ray ultraviolet scanner on Mars orbiter NOZOMI , 1999 .

[37]  S. Durrance The carbon-monoxide fourth positive bands in the Venus dayglow , 1981 .

[38]  Henrik Melin,et al.  The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn , 2009 .

[39]  Masayuki Kikuchi,et al.  Plasmaspheric EUV images seen from lunar orbit: Initial results of the extreme ultraviolet telescope on board the Kaguya spacecraft , 2010 .

[40]  Atsushi Yamazaki,et al.  Development of a compact EUV photometer for imaging the planetary magnetosphere , 2001 .

[41]  K. Yoshioka,et al.  Imaging Observation of the Earth's Plasmasphere and Ionosphere by EUVI of ISS-IMAP on the International Space Station , 2011 .

[42]  S. Kameda,et al.  Time variation in exospheric sodium density on Mercury , 2007 .

[43]  Masayuki Kikuchi,et al.  First sequential images of the plasmasphere from the meridian perspective observed by KAGUYA , 2010 .

[44]  Ichiro Yoshikawa,et al.  Multilayer coating for 30.4nm , 2005 .

[45]  F. Bagenal,et al.  Saturn's neutral torus versus Jupiter's plasma torus , 2007 .

[46]  Masayuki Kikuchi,et al.  Plasmaspheric filament: an isolated magnetic flux tube filled with dense plasmas , 2013 .

[47]  Hiroaki Kobayashi,et al.  International Symposium on Space Technology and Science , 2006 .

[48]  Go Murakami,et al.  yThe Mercury sodium atmospheric spectral imager for the MMO spacecraft of Bepi-Colombo , 2010 .

[49]  D. Strobel,et al.  Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter , 1981 .

[50]  K. Yoshioka,et al.  Hot electron component in the Io plasma torus confirmed through EUV spectral analysis , 2011 .

[51]  K. Uemizu,et al.  Field-of-View Guiding Camera on the HISAKI (SPRINT-A) Satellite , 2014 .

[52]  F. Bagenal Plasma conditions inside Io's orbit: Voyager measurements , 1985 .

[53]  Andrew J. Steffl,et al.  Cassini UVIS observations of the Io plasma torus. I. Initial results , 2004 .

[54]  W. Paterson,et al.  Observations of plasmas in the Io torus with the Galileo spacecraft , 2000 .

[55]  P. Feldman,et al.  Far-Ultraviolet Spectroscopy of Venus and Mars at 4 Å Resolution with the Hopkins Ultraviolet Telescope on Astro-2 , 2000, astro-ph/0004024.

[56]  T. Hill,et al.  The Io neutral clouds and plasma torus , 2004 .

[57]  R. R. Meier,et al.  Ultraviolet spectroscopy and remote sensing of the upper atmosphere , 1991 .

[58]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[59]  Go Murakami,et al.  Optical performance of PHEBUS/EUV detector onboard BepiColombo , 2012 .

[60]  Atsushi Yamazaki,et al.  Development of Flexible Standard Bus for ISAS/JAXA Small Scientific Satellite Series , 2012 .