Electron Ghost Imaging.

In this Letter we report a demonstration of electron ghost imaging. A digital micromirror device directly modulates the photocathode drive laser to control the transverse distribution of a relativistic electron beam incident on a sample. Correlating the structured illumination pattern to the total sample transmission then retrieves the target image, avoiding the need for a pixelated detector. In our example, we use a compressed sensing framework to improve the reconstruction quality and reduce the number of shots compared to raster scanning a small beam across the target. Compressed electron ghost imaging can reduce both acquisition time and sample damage in experiments for which spatially resolved detectors are unavailable (e.g., spectroscopy) or in which the experimental architecture precludes full frame direct imaging.

[1]  Ling-An Wu,et al.  Table-top X-ray Ghost Imaging with Ultra-Low Radiation , 2017 .

[2]  Shensheng Han,et al.  Fourier-Transform Ghost Imaging with Hard X Rays. , 2016, Physical review letters.

[3]  J. Maxson,et al.  Adaptive electron beam shaping using a photoemission gun and spatial light modulator , 2015 .

[4]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[5]  K. Berggren,et al.  Designs for a quantum electron microscope. , 2015, Ultramicroscopy.

[6]  C. Müller,et al.  Spin-Polarizing Interferometric Beam Splitter for Free Electrons. , 2016, Physical review letters.

[7]  K. Nugent,et al.  Arbitrarily shaped high-coherence electron bunches from cold atoms , 2011 .

[8]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[9]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[10]  L'Huillier,et al.  High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. , 1993, Physical review letters.

[11]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[14]  J. Spence Outrunning damage: Electrons vs X-rays—timescales and mechanisms , 2017, Structural dynamics.

[15]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[18]  D. Alesini,et al.  New technology based on clamping for high gradient radio frequency photogun , 2015 .

[19]  R. Egerton Electron energy-loss spectroscopy in the TEM , 2008 .

[20]  Kenneth Baldwin,et al.  Ghost imaging with atoms , 2016, Nature.

[21]  R. Coffee,et al.  Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. , 2015, The Review of scientific instruments.

[22]  D. Alesini,et al.  Demonstration of Single-Shot Picosecond Time-Resolved MeV Electron Imaging Using a Compact Permanent Magnet Quadrupole Based Lens. , 2016, Physical review letters.

[23]  J. Shapiro,et al.  Ghost imaging: from quantum to classical to computational , 2010 .

[24]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[25]  Hongchao Liu High-order correlation of chaotic bosons and fermions , 2016 .

[26]  Wojciech Czaja,et al.  Compressed Sensing Electron Tomography for Determining Biological Structure , 2016, Scientific Reports.

[27]  S. Chen,et al.  MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons. , 2013, Physical review letters.

[28]  David M. Kaz,et al.  Cathodoluminescence-activated nanoimaging: noninvasive near-field optical microscopy in an electron microscope. , 2015, Nano letters.

[29]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[30]  R. Li,et al.  Femtosecond Mega-electron-volt Electron Energy-Loss Spectroscopy , 2017, 1708.09330.

[31]  David Alesini,et al.  Direct Measurement of Sub-10 fs Relativistic Electron Beams with Ultralow Emittance. , 2016, Physical review letters.

[32]  K. Mima,et al.  Laser Driven Neutron Sources: Characteristics, Applications and Prospects , 2012 .

[33]  D. Paganin,et al.  Experimental X-Ray Ghost Imaging. , 2016, Physical review letters.

[34]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[35]  Laura Waller,et al.  Structured illumination microscopy with unknown patterns and a statistical prior , 2016, Biomedical optics express.

[36]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[37]  T. Martínez,et al.  Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction , 2018, Science.