Carbon nanotube interconnects

[1]  R. Sarvari,et al.  Design and Optimization for Nanoscale Power Distribution Networks in Gigascale Systems , 2007, 2007 IEEE International Interconnect Technology Conferencee.

[2]  John J. Plombon,et al.  High-frequency electrical properties of individual and bundled carbon nanotubes , 2007 .

[3]  Y. Massoud,et al.  Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques , 2006, IEEE Transactions on Electron Devices.

[4]  M. Anantram,et al.  Ballistic transport and electrostatics in metallic carbon nanotubes , 2005, IEEE Transactions on Nanotechnology.

[5]  Vladimir Stojanovic,et al.  Scaling and evaluation of carbon nanotube interconnects for VLSI applications , 2007, Nano-Net.

[6]  A. Naeemi,et al.  Physical Modeling of Temperature Coefficient of Resistance for Single- and Multi-Wall Carbon Nanotube Interconnects , 2007, IEEE Electron Device Letters.

[7]  Qian Wang,et al.  Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts , 2003 .

[8]  Y. Massoud,et al.  Understanding the Impact of Inductance in Carbon Nanotube Bundles for VLSI Interconnect Using Scalable Modeling Techniques , 2006, IEEE Transactions on Nanotechnology.

[9]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[10]  J. Meindl,et al.  Performance Modeling for Single- and Multiwall Carbon Nanotubes as Signal and Power Interconnects in Gigascale Systems , 2008, IEEE Transactions on Electron Devices.

[11]  M. Dresselhaus,et al.  Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. , 2005, Physical review letters.

[12]  Hongjie Dai,et al.  Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[13]  Uri C. Weiser,et al.  Interconnect-power dissipation in a microprocessor , 2004, SLIP '04.

[14]  Bingqing Wei,et al.  Building and testing organized architectures of carbon nanotubes , 2003, SPIE Microtechnologies.

[15]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[16]  Martel,et al.  Intertube coupling in ropes of single-wall carbon nanotubes , 2000, Physical review letters.

[17]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[18]  H. Dai,et al.  Can we achieve ultra-low resistivity in carbon nanotube-based metal composites? , 2004 .

[19]  P. M. Tedrow,et al.  Measurements of the Kinetic Inductance of Superconducting Linear Structures , 1969 .

[20]  Azad Naeemi,et al.  Optimal global interconnects for GSI , 2003 .

[21]  Kimberly L. Turner,et al.  Direction‐Selective and Length‐Tunable In‐Plane Growth of Carbon Nanotubes , 2003 .

[22]  P. Kapur,et al.  Performance Comparisons Between Carbon Nanotubes, Optical, and Cu for Future High-Performance On-Chip Interconnect Applications , 2007, IEEE Transactions on Electron Devices.

[23]  J. Meindl,et al.  Design and Performance Modeling for Single-Walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in Gigascale Integrated Systems , 2007, IEEE Transactions on Electron Devices.

[24]  T. Sakurai Perspectives on power-aware electronics , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[25]  B. Rajasekharan,et al.  How do carbon nanotubes fit into the semiconductor roadmap? , 2005 .

[26]  W. Steinhögl,et al.  Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller , 2005 .

[27]  A. Naeemi,et al.  Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI , 2005, IEEE Electron Device Letters.

[28]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[29]  J.A. Davis,et al.  Compact physical models for multilevel interconnect crosstalk in gigascale integration (GSI) , 2004, IEEE Transactions on Electron Devices.

[30]  M. Hersam Progress towards monodisperse single-walled carbon nanotubes. , 2008, Nature nanotechnology.

[31]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[32]  R. Smalley,et al.  Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using "Fast-Heating" Chemical Vapor Deposition Process , 2004 .

[33]  J. Meindl,et al.  Monolayer metallic nanotube interconnects: promising candidates for short local interconnects , 2005, IEEE Electron Device Letters.

[34]  Jie Jiang,et al.  Photoexcited electron relaxation processes in single-wall carbon nanotubes , 2005 .

[35]  Limin Huang,et al.  Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition , 2004 .

[36]  Ant Ural,et al.  Electric-field-aligned growth of single-walled carbon nanotubes on surfaces , 2002 .

[37]  E. J. Mele,et al.  Electronic structure of carbon nanotube ropes , 2000 .

[38]  T. Kuan,et al.  Alteration of Cu conductivity in the size effect regime , 2004 .

[39]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .