Thermal conductivity of nanofluid in nanochannels

Abstract This paper concerns the behaviour of a copper–argon nanofluid confined in a nanochannel. Using molecular dynamics simulations, it is shown that in narrower channels, the thermal conductivity increases by approximately 20 % compared to macroscopic cases. The results suggest that the structured liquid layers surrounding the solid particles occupy a greater percentage of the system in narrower channels, thus enhancing the thermal conductivity of the nanofluid.

[1]  Billy D. Todd,et al.  DEPARTURE FROM NAVIER-STOKES HYDRODYNAMICS IN CONFINED LIQUIDS , 1997 .

[2]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[3]  S. Yip,et al.  The Classical Nature of Thermal Conduction in Nanofluids , 2008, 0901.0058.

[4]  A. McGaughey,et al.  Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures , 2004 .

[5]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[6]  J. Fish,et al.  Role of Brownian motion hydrodynamics on nanofluid thermal conductivity , 2006 .

[7]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[8]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[9]  A. McGaughey,et al.  Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon , 2004 .

[10]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[11]  C. Sobhan,et al.  MOLECULAR DYNAMICS MODELING OF THERMAL CONDUCTIVITY ENHANCEMENT IN METAL NANOPARTICLE SUSPENSIONS , 2008 .

[12]  Nikolaos Asproulis,et al.  Wall-mass effects on hydrodynamic boundary slip. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Heinbuch,et al.  Liquid flow in pores: Slip, no-slip, or multilayer sticking. , 1989, Physical review. A, General physics.

[14]  Tahir Cagin,et al.  Thermal interactions in nanoscale fluid flow: molecular dynamics simulations with solid–liquid interfaces , 2008 .

[15]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[16]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[17]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[18]  K. Haberger,et al.  High performance forced air cooling scheme employing microchannel heat exchangers , 1995 .

[19]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[20]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[21]  Nikolaos Asproulis,et al.  Boundary slip dependency on surface stiffness. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. Barrat,et al.  Kapitza resistance at the liquid—solid interface , 2002, cond-mat/0209607.

[23]  Mo Yang,et al.  Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids , 2010 .

[24]  Yuwen Zhang,et al.  An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation , 2008 .

[25]  R. Panneer Selvam,et al.  Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids , 2007 .

[26]  T. Seydel,et al.  The interface structure of thin liquid hexane films , 1998 .

[27]  Dissipative Particle Dynamics investigation of parameters affecting planar nanochannel flows , 2011 .

[28]  A. Liakopoulos,et al.  Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls , 2009 .

[29]  Frank van Swol,et al.  On the interface between a fluid and a planar wall , 1984 .

[30]  Evans,et al.  Isothermal shear-induced heat flow. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[31]  J. H. Cushman,et al.  Fluids in micropores. I. Structure of a simple classical fluid in a slit-pore , 1987 .

[32]  A. A. Darhuber,et al.  Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Matthew Tirrell,et al.  Molecular dynamics of flow in micropores , 1987 .

[34]  Yingchun Liu,et al.  Dynamics and density profile of water in nanotubes as one-dimensional fluid. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[35]  Theodoros E. Karakasidis,et al.  Non-Equilibrium Molecular Dynamics Investigation of Parameters Affecting Planar Nanochannel Flows , 2009 .

[36]  A. Liakopoulos,et al.  Effect of wall roughness on shear viscosity and diffusion in nanochannels , 2010 .

[37]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[38]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[39]  A. Giannakopoulos,et al.  A quasi-continuum multi-scale theory for self-diffusion and fluid ordering in nanochannel flows , 2014 .

[40]  Denis J. Evans,et al.  Temperature profile for Poiseuille flow , 1997 .

[41]  S. Yip,et al.  Mean-field versus microconvection effects in nanofluid thermal conduction. , 2007, Physical review letters.

[42]  P. Dutta,et al.  Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study , 2000 .

[43]  Antonios Liakopoulos,et al.  Effects of wall roughness on flow in nanochannels. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .