Multifractal analysis of oceanic chlorophyll maps remotely sensed from space

Phytoplankton patchiness has been investigated with multifractal analysis techniques. We analyzed oceanic chlorophyll maps, measured by the SeaWiFS orbiting sensor, which are considered to be good proxies for phytoplankton. Multifractal properties are observed, from the sub-mesoscale up to the mesoscale, and are found to be consistent with the Corssin-Obukhov scale law of passive scalars. This result indicates that, within this scale range, turbulent mixing would be the dominant effect leading to the observed variability of phytoplankton fields. Finally, it is shown that multifractal patchiness can be responsible for significant biases in the nonlinear source and sink terms involved in biogeochemical numerical models.

[1]  L. Barthès,et al.  A passive scalar-like model for rain applicable up to storm scale , 2010 .

[2]  K. Denman The variance spectrum of phytoplankton in a turbulent ocean , 1976 .

[3]  W. Currie,et al.  Plankton are not passive tracers: Plankton in a turbulent environment , 2006 .

[4]  Dubrulle,et al.  Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. , 1994, Physical review letters.

[5]  Shaun Lovejoy,et al.  Universal multifractal analysis as a tool to characterize multiscale intermittent patterns : example of phytoplankton distribution in turbulent coastal waters , 1999 .

[6]  A. Obukhov,et al.  Structure of Temperature Field in Turbulent Flow , 1970 .

[7]  J. Horwood Observations on Spatial Heterogeneity of Surface Chlorophyll in one and two Dimensions , 1978, Journal of the Marine Biological Association of the United Kingdom.

[8]  F. Schmitt,et al.  Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbulence. Part I. Theory , 2005 .

[9]  Shaun Lovejoy,et al.  Towards a new synthesis for atmospheric dynamics: Space–time cascades , 2010 .

[10]  A. Lejeune,et al.  Cellular automata : prospects in astrophysical applications , 1993 .

[11]  F. Schmitt,et al.  Multifractal intermittency of Eulerian and Lagrangian turbulence of ocean temperature and plankton fields , 1996 .

[12]  L. Barthès,et al.  Multifractal analysis of African monsoon rain fields, taking into account the zero rain-rate problem , 2010 .

[13]  M. Fasham The Application of Some Stochastic Processes to the Study of Plankton Patchiness , 1978 .

[14]  F. Schmitt About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity , 2007 .

[15]  Marina Lévy,et al.  Seasonal and intraseasonal surface chlorophyll-a variability along the northwest African coast , 2008 .

[16]  S. Lovejoy,et al.  - 1-An Introduction to Stochastic Multifractal Fields , 2004 .

[17]  Shaun Lovejoy,et al.  Multifractal analysis of phytoplankton biomass and temperature in the ocean , 1996 .

[18]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[19]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[20]  F. Schmitt,et al.  Eulerian and Lagrangian properties of biophysical intermittency in the ocean , 2004 .

[21]  J. Steele,et al.  Spatial patterns in North Sea plankton , 1979 .

[22]  S. Panchev Random Functions and Turbulence , 1972 .

[23]  Antonio Turiel,et al.  Inferring missing data in satellite chlorophyll maps using turbulent cascading , 2008 .

[24]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[25]  Antonio Turiel,et al.  Common turbulent signature in sea surface temperature and chlorophyll maps , 2007 .

[26]  D. Schertzer,et al.  Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity , 2001 .

[27]  S. Corrsin On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence , 1951 .

[28]  Shaun Lovejoy,et al.  Multifractals, cloud radiances and rain , 2006 .

[29]  F. G. Figueiras,et al.  Oceanography and fisheries of the Canary Current/Iberian region of the Eastern North Atlantic (18a, E) , 2004 .

[30]  G. Schmitta,et al.  Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbulence . Part II . Applications , 2005 .

[31]  Y. Brunet,et al.  Multifractal temperature and flux of temperature variance in fully developed turbulence , 1996 .

[32]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[33]  Shaun Lovejoy,et al.  NOTES AND CORRESPONDENCE Universal Multifractals Do Exist!: Comments on ''A Statistical Analysis of Mesoscale Rainfall as a Random Cascade'' , 1997 .

[34]  Shaun Lovejoy,et al.  23/9 dimensional anisotropic scaling of passive admixtures using lidar data of aerosols. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Y. Tessier,et al.  Multifractals and resolution-independent remote sensing algorithms: The example of ocean colour , 2001 .

[36]  T. Platt Local phytoplankton abundance and turbulence , 1972 .

[37]  D. Schertzer,et al.  The simulation of universal multifractals. , 1993 .

[38]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .