Learning Segmentation by Random Walks

We present a new view of image segmentation by pairwise similarities. We interpret the similarities as edge flows in a Markov random walk and study the eigenvalues and eigenvectors of the walk's transition matrix. This interpretation shows that spectral methods for clustering and segmentation have a probabilistic foundation. In particular, we prove that the Normalized Cut method arises naturally from our framework. Finally, the framework provides a principled method for learning the similarity function as a combination of features.

[1]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[2]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[3]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[5]  Guy L. Scott,et al.  Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix , 1990, BMVC.

[6]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[7]  T. S. Lee,et al.  Gestalten of Today: Early Processing of Visual Contours and Surfaces , 1996 .

[8]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Pietro Perona,et al.  A Factorization Approach to Grouping , 1998, ECCV.

[10]  Michael Werman,et al.  A Randomized Algorithm for Pairwise Clustering , 1998, NIPS.

[11]  Jitendra Malik,et al.  Contour Continuity in Region Based Image Segmentation , 1998, ECCV.

[12]  Alan M. Frieze,et al.  Clustering in large graphs and matrices , 1999, SODA '99.

[13]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[15]  Ronen Basri,et al.  Fast multiscale image segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[16]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[17]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.