Approximating the Weight of the Euclidean Minimum Spanning Tree in Sublinear Time

We consider the problem of computing the weight of a Euclidean minimum spanning tree for a set of n points in $\mathbb R^d$. We focus on the setting where the input point set is supported by certain basic (and commonly used) geometric data structures that can provide efficient access to the input in a structured way. We present an algorithm that estimates with high probability the weight of a Euclidean minimum spanning tree of a set of points to within $1 + \eps$ using only $\widetilde{\O}(\sqrt{n} \, \text{poly} (1/\eps))$ queries for constant d. The algorithm assumes that the input is supported by a minimal bounding cube enclosing it, by orthogonal range queries, and by cone approximate nearest neighbor queries.

[1]  Pankaj K. Agarwal,et al.  Geometric Range Searching and Its Relatives , 2007 .

[2]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[3]  Bernard Chazelle,et al.  Filtering search: A new approach to query-answering , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[4]  Michiel H. M. Smid,et al.  Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..

[5]  David Eppstein,et al.  Dynamic Euclidean minimum spanning trees and extrema of binary functions , 1995, Discret. Comput. Geom..

[6]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[7]  Christian Sohler,et al.  Property testing and geometry , 2003 .

[8]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[9]  Bernard Chazelle,et al.  Lower bounds for orthogonal range searching: part II. The arithmetic model , 1990, JACM.

[10]  Dan E. Willard Predicate-Oriented Database Search Algorithms , 1978, Outstanding Dissertations in the Computer Sciences.

[11]  Artur Czumaj,et al.  Property Testing with Geometric Queries , 2001, ESA.

[12]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[13]  Piotr Indyk,et al.  Algorithms for dynamic geometric problems over data streams , 2004, STOC '04.

[14]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[15]  Otfried Cheong,et al.  Euclidean minimum spanning trees and bichromatic closest pairs , 1990, SCG '90.

[16]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[17]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[18]  Artur Czumaj,et al.  Estimating the weight of metric minimum spanning trees in sublinear-time , 2004, STOC '04.

[19]  Bernard Chazelle,et al.  Approximating the Minimum Spanning Tree Weight in Sublinear Time , 2001, ICALP.

[20]  Jeff Erickson,et al.  On the relative complexities of some geometric problems , 1995, CCCG.

[21]  George S. Lueker,et al.  A data structure for orthogonal range queries , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[22]  Michiel H. M. Smid,et al.  Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.

[23]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[24]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[25]  Bernard Chazelle,et al.  Lower bounds for orthogonal range searching: I. The reporting case , 1990, JACM.