Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet

Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. The latter prevents ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances. In this work, we propose a global-scale quantum internet consisting of a constellation of orbiting satellites that provides a continuous, on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution. We develop a technique for determining optimal satellite configurations with continuous coverage that balances both the total number of satellites and entanglement-distribution rates. Using this technique, we determine various optimal satellite configurations for a polar-orbit constellation, and we analyze the resulting satellite-to-ground loss and achievable entanglement-distribution rates for multiple ground station configurations. We also provide a comparison between these entanglement-distribution rates and the rates of ground-based quantum repeater schemes. Overall, our work provides the theoretical tools and the experimental guidance needed to make a satellite-based global quantum internet a reality.

[1]  John Rarity,et al.  QUARC: Quantum Research Cubesat - A Constellation for Quantum Communication , 2020, Cryptogr..

[2]  Jeffrey H. Shapiro,et al.  Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[3]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[4]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[5]  G. Guo,et al.  Background noise of satellite-to-ground quantum key distribution , 2005 .

[6]  D. Bruß,et al.  Satellite-based links for quantum key distribution: beam effects and weather dependence , 2019, New Journal of Physics.

[7]  Tom Vergoossen,et al.  Satellite constellations for trusted node QKD networks. , 2019, 1903.07845.

[8]  N. C. Menicucci,et al.  Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities , 2012, 1206.4949.

[9]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[10]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[11]  J. Walker Some circular orbit patterns providing continuous whole earth coverage. , 1970 .

[12]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[13]  Michael A. Temple,et al.  An operational and performance overview of the IRIDIUM low earth orbit satellite system , 1999, IEEE Communications Surveys & Tutorials.

[14]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[15]  Alexander Ling,et al.  Progress in satellite quantum key distribution , 2017, 1707.03613.

[16]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[17]  Jonathan P. Dowling,et al.  Lorentz-invariant look at quantum clock-synchronization protocols based on distributed entanglement , 2000, quant-ph/0010097.

[18]  Audun Jøsang,et al.  The Impact of Quantum Computing on Present Cryptography , 2018, ArXiv.

[19]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[20]  Sumeet Khatri,et al.  Practical figures of merit and thresholds for entanglement distribution in quantum networks , 2019, Physical Review Research.

[21]  Jian-Wei Pan,et al.  Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon. , 2017, Physical review letters.

[22]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[23]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[24]  Thomas Jennewein,et al.  The quantum space race , 2013 .

[25]  Michele Mosca,et al.  Cybersecurity in an Era with Quantum Computers: Will We Be Ready? , 2017, IEEE Security & Privacy.

[26]  Hermann Kampermann,et al.  Quantum repeaters in space , 2020, New Journal of Physics.

[27]  Jonathan P. Dowling Schrödinger’s Web: Race to Build the Quantum Internet , 2020 .

[28]  Ankita Anirban,et al.  Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons. , 2015, Optics express.

[29]  Luo Sha,et al.  Generation and analysis of correlated pairs of photons on board a nanosatellite , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[30]  Mark T. Gruneisen,et al.  Modeling daytime sky access for a satellite quantum key distribution downlink , 2015 .

[31]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[32]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[33]  William S. Adams,et al.  A Comparison of Satellite Constellations for Continuous Global Coverage , 1998 .

[34]  C. Simon,et al.  Entanglement over global distances via quantum repeaters with satellite links , 2014, 1410.5384.

[35]  Xue Li,et al.  Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory , 2018, Nature Communications.

[36]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[37]  R. David Luders,et al.  Satellite Networks for Continuous Zonal Coverage , 1961 .

[38]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[39]  Jean-Luc Palmade,et al.  Global design of satellite constellations: a multi-criteria performance comparison of classical walker patterns and new design patterns , 1998 .

[40]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[41]  A. Zeilinger,et al.  Long-distance quantum communication with entangled photons using satellites , 2003, quant-ph/0305105.

[42]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[43]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[44]  M. Lukin,et al.  Optical Interferometry with Quantum Networks. , 2018, Physical review letters.

[45]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[46]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[47]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[48]  Hiroki Takesue,et al.  Entanglement distribution over 300 km of fiber. , 2013, Optics express.

[49]  Alberto Tosi,et al.  Inherent polarization entanglement generated from a monolithic semiconductor chip , 2013, Scientific Reports.

[50]  Peter van Loock,et al.  Rate analysis for a hybrid quantum repeater , 2010, 1010.0106.

[51]  D. Trotter,et al.  Metropolitan quantum key distribution with silicon photonics , 2017, 1708.00434.

[52]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[53]  R. Ursin,et al.  Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration , 2018, EPJ Quantum Technology.

[54]  Quntao Zhuang,et al.  Repeater-enhanced distributed quantum sensing based on continuous-variable multipartite entanglement , 2018, Physical Review A.

[55]  R. J. Leopold The Iridium Communications Systems , 1992, [Proceedings] Singapore ICCS/ISITA `92.

[56]  Annalisa Riccardi,et al.  Scheduling of space to ground quantum key distribution , 2020 .

[57]  Robert Bedington,et al.  Nanosatellite experiments to enable future space-based QKD missions , 2016 .

[58]  H. Takesue,et al.  Efficient entanglement distribution over 200 kilometers. , 2009, Optics express.

[59]  Paolo Villoresi,et al.  CubeSat quantum communications mission , 2017, EPJ Quantum Technology.

[60]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[61]  Davide Castelvecchi,et al.  The quantum internet has arrived (and it hasn’t) , 2018, Nature.

[62]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[63]  Jae-Wook Lee,et al.  Satellite over satellite (SOS) network: a novel concept of hierarchical architecture and routing in satellite network , 2000, Proceedings 25th Annual IEEE Conference on Local Computer Networks. LCN 2000.

[64]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[65]  R. Laflamme,et al.  A comprehensive design and performance analysis of low Earth orbit satellite quantum communication , 2012, 1211.2733.

[66]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[67]  Jonathan Green,et al.  Photonic Engineering for CV-QKD Over Earth-Satellite Channels , 2019, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[68]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[69]  D. Hanna,et al.  Principles of Lasers , 2011 .

[70]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[71]  Sumeet Khatri,et al.  Robust quantum network architectures and topologies for entanglement distribution , 2017, 1709.07404.

[72]  Jonathan P. Dowling,et al.  Remote quantum clock synchronization without synchronized clocks , 2017, npj Quantum Information.

[73]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[74]  Jonathan Green,et al.  Quantum Communications via Satellite with Photon Subtraction , 2018, 2018 IEEE Globecom Workshops (GC Wkshps).

[75]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[76]  J. Borregaard,et al.  Quantum-assisted telescope arrays , 2018, Physical Review A.

[77]  P. Villoresi,et al.  Feasibility of satellite quantum key distribution , 2009, 0903.2160.

[78]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[79]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[80]  Patrick M. Hayden,et al.  Privacy from Accelerating Eavesdroppers: The Impact of Losses , 2014, Horizons of the Mind.

[81]  H. Abu-Amara,et al.  Routing in LEO-based satellite networks , 1999, 1999 IEEE Emerging Technologies Symposium. Wireless Communications and Systems (IEEE Cat. No.99EX297).

[82]  W. Vogel,et al.  Satellite-mediated quantum atmospheric links , 2019, Physical Review A.

[83]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[84]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[85]  C. Marquardt,et al.  Free-space quantum links under diverse weather conditions , 2017, 1707.04932.

[86]  Paolo Villoresi,et al.  Towards quantum communication from global navigation satellite system , 2018, Quantum Science and Technology.

[87]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[88]  Mark Handley,et al.  Delay is Not an Option: Low Latency Routing in Space , 2018, HotNets.

[89]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[90]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[91]  D. Gottesman,et al.  Longer-baseline telescopes using quantum repeaters. , 2011, Physical review letters.

[92]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[93]  Yang Li,et al.  Long-distance free-space quantum key distribution in daylight towards inter-satellite communication , 2017, Nature Photonics.

[94]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[95]  M. Toyoshima,et al.  Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite , 2017, 1707.08154.

[96]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[97]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[98]  Kai Chen,et al.  Metropolitan all-pass and inter-city quantum communication network. , 2010, Optics express.

[99]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[100]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[101]  Yongsoon Baek,et al.  Experimental filtering effect on the daylight operation of a free-space quantum key distribution , 2018, Scientific Reports.

[102]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[103]  Valentina Baccetti,et al.  Testing the effects of gravity and motion on quantum entanglement in space-based experiments , 2013, New Journal of Physics.

[104]  Samuel L. Braunstein,et al.  Criteria for continuous-variable quantum teleportation , 1999, quant-ph/9910030.

[105]  D. Castelvecchi The quantum internet has arrived (and it hasn't). , 2018 .

[107]  Elham Kashefi,et al.  Horizons of the Mind. A Tribute to Prakash Panangaden , 2014, Lecture Notes in Computer Science.

[108]  Marijn A. M. Versteegh,et al.  Entanglement distribution over a 96-km-long submarine optical fiber , 2018, Proceedings of the National Academy of Sciences.

[109]  W. Munro,et al.  A monolithically integrated polarization entangled photon pair source on a silicon chip , 2012, Scientific Reports.

[110]  Francesco Petruccione,et al.  Realizing long-term quantum cryptography , 2010 .

[111]  Qiang Zhang,et al.  Large scale quantum key distribution: challenges and solutions [Invited]. , 2018, Optics express.

[112]  Michele Mosca,et al.  Benchmarking the quantum cryptanalysis of symmetric, public-key and hash-based cryptographic schemes , 2019, 1902.02332.

[113]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[114]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.