DMS cycle in the marine ocean-atmosphere system – a global model study

Abstract. A global coupled ocean-atmosphere modeling system is established to study the production of dimethylsulfide (DMS) in the ocean, the DMS flux to the atmosphere, and the resulting sulfur concentrations in the atmosphere. The DMS production and consumption processes in the ocean are simulated in the marine biogeochemistry model HAMOCC5, embedded in a ocean general circulation model (MPI-OM). The atmospheric model ECHAM5 is extended by the microphysical aerosol model HAM, treating the sulfur chemistry in the atmosphere and the evolution of the microphysically interacting internally- and externally mixed aerosol populations. We simulate a global annual mean DMS sea surface concentration of 1.8 nmol l−1, a DMS emission of 28 Tg(S) yr−1, a DMS burden in the atmosphere of 0.077 Tg(S), and a DMS lifetime of 1.0 days. To quantify the role of DMS in the atmospheric sulfur cycle we simulate the relative contribution of DMS-derived SO2 and SO42− to the total atmospheric sulfur concentrations. DMS contributes 25% to the global annually averaged SO2 column burden. For SO42− the contribution is 27%. The coupled model setup allows the evaluation of the simulated DMS quantities with measurements taken in the ocean and in the atmosphere. The simulated global distribution of DMS sea surface concentrations compares reasonably well with measurements. The comparison to SO42− surface concentration measurements in regions with a high DMS contribution to SO42− shows an overestimation by the model. This overestimation is most pronounced in the biologically active season with high DMS emissions and most likely caused by a too high simulated SO42− yield from DMS oxidation.

[1]  O. Aumont,et al.  Dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) sea surface distributions simulated from a global three-dimensional ocean carbon cycle model , 2002 .

[2]  E. J. Bock,et al.  Water‐air flux of dimethylsulfide , 2000 .

[3]  P. Liss,et al.  Elevated production of dimethylsulfide resulting from viral infection of cultures of Phaeocystis pouchetii , 1998 .

[4]  Paul J. Crutzen,et al.  Model study of multiphase DMS oxidation with a focus on halogens , 2003 .

[5]  J. Seinfeld,et al.  Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development , 1990 .

[6]  W. Sunda,et al.  An antioxidant function for DMSP and DMS in marine algae , 2002, Nature.

[7]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[8]  S. Pandis,et al.  Dimethylsulfide chemistry in the remote marine atmosphere: Evaluation and sensitivity analysis of available mechanisms , 1997 .

[9]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[10]  M. Steinke,et al.  Erratum: Vertical and temporal variability of DMSP lyase activity in a coccolithophorid bloom in the northern North Sea (Deep-Sea Research Part II: Topical Studies in Oceanography 49 (3001-3016) PII: S0967064502000681) , 2003 .

[11]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[12]  Olivier Boucher,et al.  History of sulfate aerosol radiative forcings , 2002 .

[13]  R. Kiene Production of methanethiol from dimethylsulfoniopropionate in marine surface waters , 1996 .

[14]  L. Barrie,et al.  Simulating the impact of sea salt on global nss sulphate aerosols , 2003 .

[15]  J. Randerson,et al.  Carbon emissions from fires in tropical and subtropical ecosystems , 2003 .

[16]  P. Quinn,et al.  Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean , 1992 .

[17]  L. Stone,et al.  Modelling the production of dimethylsulfide during a phytoplankton bloom , 1993 .

[18]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[19]  C. Pedrós-Alió,et al.  Role of vertical mixing in controlling the oceanic production of dimethyl sulphide , 1999, Nature.

[20]  J. Stefels Physiological aspects of the production and conversion of DMSP in marine algae and higher plants , 2000 .

[21]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[22]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[23]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[24]  N. Mihalopoulos,et al.  Seasonal variation of atmospheric dimethylsulfide at Amsterdam Island in the southern Indian Ocean , 1990 .

[25]  M. Andreae,et al.  Non‐sea‐salt sulfate, methanesulfonate, and nitrate aerosol concentrations and size distributions at Cape Grim, Tasmania , 1999 .

[26]  R. Kiene Dynamics of dimethyl sulfide and dimethylsulfoniopropionate in oceanic water samples , 1992 .

[27]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[28]  F. Chavez,et al.  The cycling of sulfur in surface seawater of the northeast Pacific , 1994 .

[29]  S. Wakeham,et al.  Oceanic Dimethylsulfide: Production During Zooplankton Grazing on Phytoplankton , 1986, Science.

[30]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[31]  L. Bopp,et al.  Assessment of a global climatology of oceanic dimethylsulfide (DMS) concentrations based on SeaWiFS imagery (1998-2001) , 2004 .

[32]  Alain F. Vézina,et al.  Ecosystem modelling of the cycling of marine dimethylsulfide: a review of current approaches and of the potential for extrapolation to global scales , 2004 .

[33]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[34]  Wim Klaassen,et al.  The contribution of ocean‐leaving DMS to the global atmospheric burdens of DMS, MSA, SO2, and NSS SO4= , 2003 .

[35]  P. Buat-Ménard The role of air-sea exchange in geochemical cycling , 1986 .

[36]  J. Lelieveld,et al.  A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model , 1998 .

[37]  Johann Feichter,et al.  Simulation of the tropospheric sulfur cycle in a global climate model , 1996 .

[38]  G. Tarran,et al.  Dynamics of particulate dimethylsulphoniopropionate during a Lagrangian experiment in the northern North Sea , 2002 .

[39]  Hans-F. Graf,et al.  The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years , 2002 .

[40]  Sauveur Belviso,et al.  Seasonal variations of atmospheric sulfur dioxide and dimethylsulfide concentrations at Amsterdam Island in the southern Indian Ocean , 1992 .

[41]  Daniel Grosjean,et al.  Photooxidation of dimethyl sulfide and dimethyl disulfide. II: Mechanism evaluation , 1990 .

[42]  D. C. Yoch,et al.  Evidence for Intracellular and Extracellular Dimethylsulfoniopropionate (DMSP) Lyases and DMSP Uptake Sites in Two Species of Marine Bacteria , 1997, Applied and environmental microbiology.

[43]  Kjm Kramer,et al.  Dimethylsulphide production by plankton communities , 1995 .

[44]  O. Boucher,et al.  DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation , 2002 .

[45]  M. Fasham,et al.  Global fields of sea surface dimethylsulfide predicted from chlorophyll, nutrients and light , 2001 .

[46]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[47]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[48]  Katharina D. Six,et al.  Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model , 1996 .

[49]  A. Kettle,et al.  Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models , 2000 .

[50]  K. Johnson,et al.  A model of the iron cycle in the ocean , 2000 .

[51]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[52]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[53]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[54]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[55]  Luca Bonaventura,et al.  The atmospheric general circulation model ECHAM 5. PART I: Model description , 2003 .

[56]  Meinrat O. Andreae,et al.  Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations , 1985 .

[57]  G. Brasseur,et al.  A three-dimensional study of the tropospheric sulfur cycle , 1995 .

[58]  R. Kiene,et al.  Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico , 2000 .

[59]  Reinhard Mechler,et al.  Scenarios of World Anthropogenic Emissions of Air Pollutants and Methane up to 2030 , 2005 .

[60]  P. Wetzel Interannual and decadal variability in the air-sea exchange of CO₂ - a model study , 2005 .

[61]  W. McGillis,et al.  Simultaneous use of relaxed eddy accumulation and gradient flux techniques for the measurement of sea-to-air exchange of dimethyl sulphide , 2002 .

[62]  T. Platt,et al.  An estimate of global primary production in the ocean from satellite radiometer data , 1995 .

[63]  D. Covert,et al.  Atmospheric sulfur chemistry and cloud condensation nuclei (CCN) concentrations over the northeastern Pacific Coast , 1993 .

[64]  M. D. Keller,et al.  Dimethylsulfide production in marine phytoplankton. , 1989 .

[65]  T. Berntsen,et al.  A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle , 2004 .

[66]  A. Watson,et al.  In situ evaluation of air‐sea gas exchange parameterizations using novel conservative and volatile tracers , 2000 .

[67]  E. Maier‐Reimer,et al.  Sea‐to‐air CO2 flux from 1948 to 2003: A model study , 2005 .

[68]  Wade R. McGillis,et al.  A cubic relationship between air‐sea CO2 exchange and wind speed , 1999 .

[69]  I. Tegen,et al.  Relative importance of climate and land use in determining present and future global soil dust emission , 2004 .

[70]  S. Doney,et al.  Iron supply and demand in the upper ocean , 2000 .

[71]  D. Erickson,et al.  Modeling the biogeochemical cycle of dimethylsulfide in the upper ocean: a review , 2001 .

[72]  M. Maltrud,et al.  Global eddy permitting simulations of surface ocean nitrogen, iron, sulfur cycling. , 2003, Chemosphere.

[73]  M. Steinke,et al.  Vertical and temporal variability of DMSP lyase activity in a coccolithophorid bloom in the northern North Sea , 2002 .

[74]  A. Saltelli,et al.  The Role of Multiphase Chemistry in the Oxidation of Dimethylsulphide (DMS). A Latitude Dependent Analysis , 1999 .

[75]  A. Oschlies Model-derived estimates of new production: New results point towards lower values , 2001 .

[76]  T. Bates,et al.  Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean , 1996 .

[77]  A. Tompkins A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover , 2002 .

[78]  J. Lamarque,et al.  A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2 , 2001 .

[79]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[80]  Stéphane Blain,et al.  An ecosystem model of the global ocean including Fe, Si, P colimitations , 2003 .

[81]  P. Brimblecombe,et al.  Atmospheric Chemistry and Physics Modelling the Contribution of Sea Salt and Dimethyl Sulfide Derived Aerosol to Marine Ccn , 2022 .

[82]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[83]  J. Wilson,et al.  Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model , 2006 .

[84]  E. S. Altzman Experimental determination of the diffusion coefficient of dimethylsulfide in water , 2007 .

[85]  F. Dentener,et al.  Interannual variability of atmospheric dimethylsulfide in the southern Indian Ocean , 2000 .

[86]  C. O'Dowd,et al.  The relative importance of non‐sea‐salt sulphate and sea‐salt aerosol to the marine cloud condensation nuclei population: An improved multi‐component aerosol‐cloud droplet parametrization , 1999 .

[87]  M. Andreae,et al.  Biogenic sulfur emissions and aerosols over the tropical South Atlantic: 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei , 1995 .

[88]  Joachim Segschneider,et al.  The HAMburg Ocean Carbon Cycle Model HAMOCC5.1 - Technical Description Release 1.1 , 2005 .

[89]  F. Brandini,et al.  The influence of light and temperature on carbon-specific DMS release by cultures of Phaeocystis antarctica and three antarctic diatoms , 1994 .

[90]  P. Liss,et al.  Marine sulphur emissions , 1997 .

[91]  Ulrike Lohmann,et al.  Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model , 1996 .

[92]  G. Ayers,et al.  DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry , 2000 .

[93]  J. Putaud,et al.  Dimethylsulfide, aerosols, and condensation nuclei over the tropical northeastern Atlantic Ocean , 1993 .

[94]  T. Bates,et al.  Biological removal of dimethyl sulphide from sea water , 1990, Nature.

[95]  R. Slater,et al.  A new estimate of the CaCO3 to organic carbon export ratio , 2002 .

[96]  M. Chin,et al.  Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model , 1999 .

[97]  Mojib Latif,et al.  The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates , 2003 .

[98]  R. Kiene,et al.  New and important roles for DMSP in marine microbial communities , 2000 .

[99]  C. Thiel,et al.  Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role , 1991 .

[100]  Michael Schulz,et al.  Sea-salt aerosol source functions and emissions , 2004 .

[101]  M. Maltrud,et al.  Comparison of global climatological maps of sea surface dimethyl sulfide , 2004 .

[102]  J. Dachs,et al.  Global ocean emission of dimethylsulfide predicted from biogeophysical data , 2002 .

[103]  M. Mckee,et al.  Computational Study of the Reactions between XO (X = Cl, Br, I) and Dimethyl Sulfide , 2004 .

[104]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[105]  U. Lohmann,et al.  Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme , 2002 .