An introduction to DSmT

The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new approach.

[1]  Jian-Bo Yang,et al.  On the combination and normalization of interval-valued belief structures , 2007, Information Sciences.

[2]  R. Yager On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..

[3]  Florentin Smarandache,et al.  Neutrosophy, A New Branch of Philosophy , 2014 .

[4]  Jean Dezert,et al.  Uniform and Partially Uniform Redistribution Rules , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[5]  Mihai Cristian Florea Combinaison d'informations hétérogènes dans le cadre unificateur des ensembles aléatoires : approximations et robustesse , 2007 .

[6]  Toshiyuki Inagaki Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory , 1991 .

[7]  D. Bell,et al.  Generalizing the Dempster-Shafer rule of combination to Boolean algebras , 1993, [1993] Proceedings IEEE International Conference on Developing and Managing Intelligent System Projects.

[8]  J. J. Sudano The system probability information content (PIC) relationship to contributing components, combining independent multi-source beliefs, hybrid and pedigree pignistic probabilities , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[9]  Florentin Smarandache,et al.  Multiple Solutions for the Nonhomogeneous P-Laplacian with Critical Sobolev-Hardy Exponent , 2004 .

[10]  Lotfi A. Zadeh,et al.  A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination , 1985, AI Mag..

[11]  Philippe Smets,et al.  The Transferable Belief Model , 1991, Artif. Intell..

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[14]  Lockheed Martin,et al.  Yet Another Paradigm Illustrating Evidence Fusion (YAPIEF) , 2006, 2006 9th International Conference on Information Fusion.

[15]  Kari Sentz,et al.  Combination of Evidence in Dempster-Shafer Theory , 2002 .

[16]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[17]  Didier Dubois,et al.  On the unicity of dempster rule of combination , 1986, Int. J. Intell. Syst..

[18]  J.J. Sudano Equivalence between belief theories and naive bayesian fusion for systems with independent evidential data: part I, the theory , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[19]  Mati Tombak,et al.  On Logical Method for Counting Dedekind Numbers , 2001, FCT.

[20]  R. Yager Hedging in the Combination of Evidence , 1983 .

[21]  A. Robinson Non-standard analysis , 1966 .

[22]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[23]  Eric Lefevre,et al.  Belief function combination and conflict management , 2002, Inf. Fusion.

[24]  Lian-zeng Zhang,et al.  Representation, independence, and combination of evidence in the Dempster-Shafer theory , 1994 .

[25]  J. J. Sudano Equivalence between belief theories and naive bayesian fusion for systems with independent evidential data: part II, the example , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[26]  Thierry Denoeux,et al.  Reasoning with imprecise belief structures , 1999, Int. J. Approx. Reason..

[27]  Philippe Smets Non-standard logics for automated reasoning , 1988 .

[28]  Peter H. Schmitt,et al.  Multiple-valued Logic , 2008 .

[29]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[30]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[31]  Lotfi A. Zadeh,et al.  Review of A Mathematical Theory of Evidence , 1984 .

[32]  Jean Dezert,et al.  A new probabilistic transformation of belief mass assignment , 2008, 2008 11th International Conference on Information Fusion.

[33]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[34]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[35]  Jean Dezert,et al.  DSmT: A new paradigm shift for information fusion , 2006, ArXiv.

[36]  Jean Dezert,et al.  Applications and Advances of DSmT for Information Fusion , 2004 .

[37]  Florentin Smarandache,et al.  A unifying field in logics : neutrosophic logic : neutrosophy, neutrosophic set, neutrosophic probability , 2020 .

[38]  J. Bolanos,et al.  Propagation of linguistic labels in causal networks , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[39]  Frans Voorbraak,et al.  On the Justification of Dempster's Rule of Combination , 1988, Artif. Intell..

[40]  Thierry Denux Reasoning with imprecise belief structures , 1999 .

[41]  F. Smarandache A Unifying Field in Logics: Neutrosophic Logic. , 1999 .

[42]  R. Dedekind,et al.  Über Zerlegungen von Zahlen Durch Ihre Grössten Gemeinsamen Theiler , 1897 .

[43]  由希 辻 Representation , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[44]  Jean Dezert,et al.  Target Type Tracking with PCR5 and Dempster's rules: A Comparative Analysis , 2006, 2006 9th International Conference on Information Fusion.

[45]  J. Paris The Uncertain Reasoner's Companion: A Mathematical Perspective , 1994 .

[46]  Ronald R. Yager ON THE RELATIONSHIP OF METHODS OF AGGREGATING EVIDENCE IN EXPERT SYSTEMS , 1985 .

[47]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[48]  Catherine K. Murphy Combining belief functions when evidence conflicts , 2000, Decis. Support Syst..

[49]  P. Smets Data fusion in the transferable belief model , 2000, Proceedings of the Third International Conference on Information Fusion.

[50]  V. V. Gokhale Reply to the comments of R. A. Brown , 1981 .

[51]  Laurence Cholvy Using Logic to Understand Relations between DSmT and Dempster-Shafer Theory , 2009, ECSQARU.

[52]  S. Moral,et al.  Calculus with linguistic probabilities and beliefs , 1994 .

[53]  J. Dezert,et al.  Information fusion based on new proportional conflict redistribution rules , 2005, 2005 7th International Conference on Information Fusion.

[54]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[55]  Lotfi A. Zadeh,et al.  On the Validity of Dempster''s Rule of Combination of Evidence , 1979 .