Assessing the variability of posterior probabilities in Gaussian model-based clustering

We propose a variant of the bootstrap to assess the variability of posterior probabilities arising from Gaussian model-based clustering. The bootstrap variant uses predictions based on out-of-boots...

[1]  G J McLachlan,et al.  Confidence intervals for the conditional probability of misallocation in discriminant analysis. , 1975, Biometrics.

[2]  Jeffrey L. Andrews,et al.  Addressing overfitting and underfitting in Gaussian model-based clustering , 2018, Comput. Stat. Data Anal..

[3]  D. Rubin The Bayesian Bootstrap , 1981 .

[4]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[5]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[6]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[7]  Paul D. McNicholas,et al.  Parsimonious Gaussian mixture models , 2008, Stat. Comput..

[8]  Luca Scrucca,et al.  mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models , 2016, R J..

[9]  P. Lachenbruch An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. , 1967, Biometrics.

[10]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[11]  Volodymyr Melnykov,et al.  On the distribution of posterior probabilities in finite mixture models with application in clustering , 2013, J. Multivar. Anal..

[12]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[13]  G. McLachlan ASSESSING THE PERFORMANCE OF AN ALLOCATION RULE , 1986 .

[14]  Jeffrey L. Andrews,et al.  A bootstrap‐augmented alternating expectation‐conditional maximization algorithm for mixtures of factor analyzers , 2019, Stat.

[15]  C. A. Smith Some examples of discrimination. , 1947, Annals of eugenics.

[16]  Thomas Brendan Murphy,et al.  Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap , 2015, Computational Statistics.

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .