Structure of complete Pol II–DSIF–PAF–SPT6 transcription complex reveals RTF1 allosteric activation

[1]  M. Vermeulen,et al.  A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair , 2020, Nature Communications.

[2]  Sjors H.W. Scheres,et al.  Faculty Opinions recommendation of Real-time cryo-electron microscopy data preprocessing with Warp. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[3]  Hao Chi,et al.  A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides , 2019, Nature Communications.

[4]  B. Tian,et al.  Paf1C regulates RNA polymerase II progression by modulating elongation rate , 2019, Proceedings of the National Academy of Sciences.

[5]  S. Ficarro,et al.  In vitro analysis of RNA polymerase II elongation complex dynamics , 2019, bioRxiv.

[6]  Poul Nissen,et al.  Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps , 2018, bioRxiv.

[7]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[8]  P. Cramer,et al.  Structure of transcribing RNA polymerase II-nucleosome complex , 2018, Nature Communications.

[9]  Yue Chen,et al.  Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation , 2018, Nature Communications.

[10]  D. Patel,et al.  Transcriptional elongation factor Paf1 core complex adopts a spirally wrapped solenoidal topology , 2018, Proceedings of the National Academy of Sciences.

[11]  P. Cramer,et al.  Structure of paused transcription complex Pol II-DSIF-NELF , 2018, Nature.

[12]  P. Cramer,et al.  Structure of activated transcription complex Pol II–DSIF–PAF–SPT6 , 2018, Nature.

[13]  P. Cramer,et al.  Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by alpha-amanitin. , 2018 .

[14]  P. Cramer,et al.  Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by α-amanitin , 2018, The Journal of Biological Chemistry.

[15]  Wenqing Xu,et al.  Crystal structure of the N-terminal domain of human CDC73 and its implications for the hyperparathyroidism-jaw tumor (HPT-JT) syndrome , 2017, Scientific Reports.

[16]  Patrick Cramer,et al.  Nucleosome-Chd1 structure and implications for chromatin remodelling , 2017, Nature.

[17]  T. Formosa,et al.  A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription , 2017, eLife.

[18]  Yong Ding,et al.  Phosphorylation of SPT5 by CDKD;2 Is Required for VIP5 Recruitment and Normal Flowering in Arabidopsis thaliana[OPEN] , 2017, Plant Cell.

[19]  Adam D. Wier,et al.  The Histone Modification Domain of Paf1 Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation through an Interaction with Rad6. , 2016, Molecular cell.

[20]  Craig D. Kaplan,et al.  High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop , 2016, bioRxiv.

[21]  P. Cramer,et al.  Architecture and RNA binding of the human negative elongation factor , 2016, eLife.

[22]  C. Dienemann,et al.  Transcription initiation complex structures elucidate DNA opening , 2016, Nature.

[23]  R. Tjian,et al.  Near-atomic resolution visualization of human transcription promoter opening , 2016, Nature.

[24]  R. Roeder,et al.  RNA polymerase II–associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II , 2015, Science.

[25]  Ashley R. Woodfin,et al.  PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II , 2015, Cell.

[26]  H. Handa,et al.  Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex , 2015, Molecular and Cellular Biology.

[27]  S. Darst,et al.  CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition , 2015, Proceedings of the National Academy of Sciences.

[28]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[29]  Martin Beck,et al.  Xlink Analyzer: Software for analysis and visualization of cross-linking data in the context of three-dimensional structures , 2015, Journal of structural biology.

[30]  S. Shuman,et al.  The PAF Complex and Prf1/Rtf1 Delineate Distinct Cdk9-Dependent Pathways Regulating Transcription Elongation in Fission Yeast , 2013, PLoS genetics.

[31]  S. Darst,et al.  Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1 , 2013, Proceedings of the National Academy of Sciences.

[32]  Adam D. Wier,et al.  Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin , 2013, Proceedings of the National Academy of Sciences.

[33]  Hao Zhou,et al.  Structural insights into Paf1 complex assembly and histone binding , 2013, Nucleic acids research.

[34]  R. Gardner,et al.  The Recruitment of the Saccharomyces cerevisiae Paf1 Complex to Active Genes Requires a Domain of Rtf1 That Directly Interacts with the Spt4-Spt5 Complex , 2013, Molecular and Cellular Biology.

[35]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[36]  A. Hinnebusch,et al.  Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR‐independent recruitment of Paf1 complex , 2012, The EMBO journal.

[37]  M. Dong,et al.  Identification of cross-linked peptides from complex samples , 2012, Nature Methods.

[38]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[39]  Christopher P. Davis,et al.  Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast , 2012, Proceedings of the National Academy of Sciences.

[40]  Steven M Block,et al.  Efficient reconstitution of transcription elongation complexes for single-molecule studies of eukaryotic RNA polymerase II , 2012, Transcription.

[41]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[42]  Christopher P. Davis,et al.  Cdc73 Subunit of Paf1 Complex Contains C-terminal Ras-like Domain That Promotes Association of Paf1 Complex with Chromatin* , 2012, The Journal of Biological Chemistry.

[43]  Ann M. Cavanaugh,et al.  The PAF1 complex differentially regulates cardiomyocyte specification. , 2011, Developmental biology.

[44]  Simone C. Wiesler,et al.  Activity Map of the Escherichia coli RNA Polymerase Bridge Helix* , 2011, The Journal of Biological Chemistry.

[45]  R. Weinzierl The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain , 2010, BMC Biology.

[46]  Jau-Nian Chen,et al.  The PAF1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish. , 2010, Developmental biology.

[47]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[48]  R. Thakker,et al.  Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism‐jaw tumor syndrome (HPT‐JT) and parathyroid tumors , 2010, Human mutation.

[49]  R. Roeder,et al.  The Human PAF1 Complex Acts in Chromatin Transcription Elongation Both Independently and Cooperatively with SII/TFIIS , 2010, Cell.

[50]  Steven Hahn,et al.  Phosphorylation of the Transcription Elongation Factor Spt5 by Yeast Bur1 Kinase Stimulates Recruitment of the PAF Complex , 2009, Molecular and Cellular Biology.

[51]  P. Cramer,et al.  Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. , 2009, Molecular cell.

[52]  Herbert Schulz,et al.  A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. , 2009, Cell stem cell.

[53]  K. Basler,et al.  The role of Parafibromin/Hyrax as a nuclear Gli/Ci-interacting protein in Hedgehog target gene control , 2009, Mechanisms of Development.

[54]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[55]  P. Cramer,et al.  Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation , 2008, Nature Structural &Molecular Biology.

[56]  Craig D. Kaplan,et al.  The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. , 2008, Molecular cell.

[57]  S. Takada,et al.  Paf1 complex homologues are required for Notch‐regulated transcription during somite segmentation , 2007, EMBO Reports.

[58]  D. Vassylyev,et al.  Allosteric control of the RNA polymerase by the elongation factor RfaH , 2007, Nucleic acids research.

[59]  Kelli L. Roinick,et al.  Rtf1 Is a Multifunctional Component of the Paf1 Complex That Regulates Gene Expression by Directing Cotranscriptional Histone Modification , 2007, Molecular and Cellular Biology.

[60]  K. Basler,et al.  Parafibromin/Hyrax Activates Wnt/Wg Target Gene Transcription by Direct Association with β-catenin/Armadillo , 2006, Cell.

[61]  D. Reinberg,et al.  Drosophila Paf1 Modulates Chromatin Structure at Actively Transcribed Genes , 2006, Molecular and Cellular Biology.

[62]  Paul Tempst,et al.  The human PAF complex coordinates transcription with events downstream of RNA synthesis. , 2005, Genes & development.

[63]  M. Gstaiger,et al.  The HRPT2 Tumor Suppressor Gene Product Parafibromin Associates with Human PAF1 and RNA Polymerase II , 2005, Molecular and Cellular Biology.

[64]  O. Rozenblatt-Rosen,et al.  The Parafibromin Tumor Suppressor Protein Is Part of a Human Paf1 Complex , 2005, Molecular and Cellular Biology.

[65]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[66]  B. Peterlin,et al.  Dynamics of Human Immunodeficiency Virus Transcription: P-TEFb Phosphorylates RD and Dissociates Negative Effectors from the Transactivation Response Element , 2004, Molecular and Cellular Biology.

[67]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[68]  Clement S. Chu,et al.  A New Class of Bacterial RNA Polymerase Inhibitor Affects Nucleotide Addition , 2003, Science.

[69]  Mark Johnston,et al.  The Paf1 Complex Is Essential for Histone Monoubiquitination by the Rad6-Bre1 Complex, Which Signals for Histone Methylation by COMPASS and Dot1p* , 2003, Journal of Biological Chemistry.

[70]  Kevin Struhl,et al.  The Rtf1 Component of the Paf1 Transcriptional Elongation Complex Is Required for Ubiquitination of Histone H2B* , 2003, Journal of Biological Chemistry.

[71]  Hien G. Tran,et al.  Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes , 2003, The EMBO journal.

[72]  K. Yano,et al.  Human Transcription Elongation Factor NELF: Identification of Novel Subunits and Reconstitution of the Functionally Active Complex , 2003, Molecular and Cellular Biology.

[73]  M. Johnston,et al.  The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. , 2003, Molecular cell.

[74]  Kevin Struhl,et al.  Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. , 2003, Molecular cell.

[75]  G. Cagney,et al.  RNA Polymerase II Elongation Factors of Saccharomyces cerevisiae: a Targeted Proteomics Approach , 2002, Molecular and Cellular Biology.

[76]  J. Jaehning,et al.  Ctr9, Rtf1, and Leo1 Are Components of the Paf1/RNA Polymerase II Complex , 2002, Molecular and Cellular Biology.

[77]  T. Richmond,et al.  Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 A resolution. , 2000, Journal of molecular biology.

[78]  Hiroshi Handa,et al.  NELF, a Multisubunit Complex Containing RD, Cooperates with DSIF to Repress RNA Polymerase II Elongation , 1999, Cell.

[79]  T. Rana,et al.  Tat-associated Kinase (P-TEFb): a Component of Transcription Preinitiation and Elongation Complexes* , 1999, The Journal of Biological Chemistry.

[80]  H. Handa,et al.  Evidence that P‐TEFb alleviates the negative effect of DSIF on RNA polymerase II‐dependent transcription in vitro , 1998, The EMBO journal.

[81]  Ping Wei,et al.  A Novel CDK9-Associated C-Type Cyclin Interacts Directly with HIV-1 Tat and Mediates Its High-Affinity, Loop-Specific Binding to TAR RNA , 1998, Cell.

[82]  K. Yano,et al.  DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. , 1998, Genes & development.

[83]  D. Price,et al.  Control of RNA Polymerase II Elongation Potential by a Novel Carboxyl-terminal Domain Kinase* , 1996, The Journal of Biological Chemistry.

[84]  P. Wade,et al.  Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription , 1996, Molecular and cellular biology.

[85]  R. L. Baldwin,et al.  N‐ and C‐capping preferences for all 20 amino acids in α‐helical peptides , 1995, Protein science : a publication of the Protein Society.

[86]  W. Gu,et al.  Identification of a decay in transcription potential that results in elongation factor dependence of RNA polymerase II , 1995, The Journal of Biological Chemistry.

[87]  R. Kaptein,et al.  Structure and DNA binding of the human Rtf1 Plus3 domain. , 2008, Structure.

[88]  J. Plojhar [20 YEARS]. , 1965, Casopis lekaru ceskych.