A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method

In this paper, we present a gradient-type stabilization formulation for the meshfree Galerkin nodal integration method in liner elastic analysis. The stabilization is introduced to the standard variational formulation through an enhanced strain induced by a decomposed smoothed displacement field using the first-order meshfree convex approximations. It leads to a penalization formulation containing a symmetric strain gradient stabilization term for the enhancement of coercivity in the direct nodal integration method. As a result, the stabilization parameter comes naturally from the enhanced strain field and provides the simplest means for effecting stabilization. This strain gradient stabilization formulation is also shown to pass the constant stress patch test if the SCNI scheme is applied to the non-stabilized terms. Several numerical benchmarks are examined to demonstrate the effectiveness and accuracy of the proposed stabilization method in linear elastic analysis.

[1]  Ted Belytschko,et al.  Second‐order accurate derivatives and integration schemes for meshfree methods , 2012 .

[2]  C. T. Wu,et al.  On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation , 2011 .

[3]  Ted Belytschko,et al.  Regularization of material instabilities by meshfree approximations with intrinsic length scales , 2000 .

[4]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[5]  Ted Belytschko,et al.  Immersed particle method for fluid–structure interaction , 2009 .

[6]  Liping Liu THEORY OF ELASTICITY , 2012 .

[7]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[8]  Yong Guo,et al.  A Coupled Meshfree/Finite Element Method for Automotive Crashworthiness Simulations , 2009 .

[9]  Rade Vignjevic,et al.  A treatment of zero-energy modes in the smoothed particle hydrodynamics method , 2000 .

[10]  Wing Kam Liu,et al.  MESHLESS METHODS FOR SHEAR-DEFORMABLE BEAMS AND PLATES , 1998 .

[11]  Michael A. Puso,et al.  Meshfree and finite element nodal integration methods , 2008 .

[12]  R. A. Uras,et al.  Finite element stabilization matrices-a unification approach , 1985 .

[13]  Yong-Ming Guo,et al.  Numerical modeling of composite solids using an immersed meshfree Galerkin method , 2013 .

[14]  T. Hughes,et al.  Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations , 1993 .

[15]  M. Koishi,et al.  Three‐dimensional meshfree‐enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites , 2012 .

[16]  Jiun-Shyan Chen,et al.  An arbitrary order variationally consistent integration for Galerkin meshfree methods , 2013 .

[17]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[18]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .

[19]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[20]  Dongdong Wang,et al.  Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method , 2014 .

[21]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[22]  Guangyao Li,et al.  A nodal integration technique for meshfree radial point interpolation method (NI-RPIM) , 2007 .

[23]  Shaofan Li,et al.  Meshfree simulations of thermo-mechanical ductile fracture , 2006 .

[24]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[25]  Su Hao,et al.  Moving particle finite element method with superconvergence: Nodal integration formulation and applications , 2006 .

[26]  C. T. Wu,et al.  An Introduction to the LS-DYNA ® Smoothed Particle Galerkin Method for Severe Deformation and Failure Analyses in Solids , 2014 .

[27]  Sheng-Wei Chi,et al.  Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems , 2014, CPM 2014.

[28]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[29]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[30]  C. T. Wu,et al.  A generalized approximation for the meshfree analysis of solids , 2011 .

[31]  Huafeng Liu,et al.  Meshfree particle method , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[32]  Wei Hu,et al.  Bubble‐enhanced smoothed finite element formulation: a variational multi‐scale approach for volume‐constrained problems in two‐dimensional linear elasticity , 2014 .

[33]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[34]  Wing Kam Liu,et al.  Implementation of boundary conditions for meshless methods , 1998 .

[35]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[36]  Thomas Slawson,et al.  Semi-Lagrangian reproducing kernel particle method for fragment-impact problems , 2011 .

[37]  Hui-Ping Wang,et al.  An improved reproducing kernel particle method for nearly incompressible finite elasticity , 2000 .

[38]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[39]  Richard H. Gallagher,et al.  Finite elements in fluids , 1975 .

[40]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[41]  P. Pinsky,et al.  A galerkin least-squares finite element method for the two-dimensional Helmholtz equation , 1995 .

[42]  J.S. Chen,et al.  A meshfree‐enriched finite element method for compressible and near‐incompressible elasticity , 2012 .

[43]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[44]  T. Hughes,et al.  A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. , 1982 .

[45]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .